SOME TECHNOLOGICAL ASPECTS OF THE ASSEM-BLY UNITS OF MODERN AIRCRAFT
Abstract
The structure of the labor intensity of aircraft manufacturing is considered, in which the largest part is occupied by the aggregate and final assembly. The need for redistribution of work between different types of production has been formed in order to further reduce the labor intensity of assembly by forming additional requirements for structural elements that differ from the design documentation and the fulfillment of which would be expected during assembly. The main ways to reduce the labor intensity of the unit and final assembly of modern aircraft have been identified, which consist of increasing the level of production manufacturability of structures, integrated mechanization and automation of production.
The main trends in the orientation of aviation production towards modern means of technological equipment are considered. A specification of the use in the technical literature of the concepts “assembly device” and “slipway” is proposed to determine clear guidelines for establishing a certain type of technological equipment, depending on a number of factors. A review of domestic and foreign technologies for assembling and joining assemblies of aircraft structures was completed, and forecast data on the accuracy of the resulting joints was generated. It is concluded that there is a domestic (as well as Soviet, for the most part) aircraft manufacturing practice, which involves performing connection operations here, in the slipway, using mainly built-in (portable) or manual mechanized tools, which leads to a large amount of manual labor, and the need to complete the joints of compartments and units “on site” also makes it impossible to ensure high precision parameters of the joint zone. Examples of processes for joining fuselage compartments of foreign-made aircraft using standless docking stands or mobile robotic platforms are considered, which are integrated with the aircraft coordinate system and allow holes to be placed with high precision, drilled and fasteners installed. An analysis of the factors influencing the final accuracy during assembly and docking work in various “schools” of assembling aircraft structures was carried out. A review of some representatives of technological automated equipment for performing assembly work was carried out. A list of optimal criteria for assessing production manufacturability when making connections during the assembly of aircraft structures is proposed.
Keywords
Full Text:
PDF (Українська)References
Pekarsh, A. Y., Tarasov, Yu. M., Kryvov, H. A., Hromashev, H. A. y dr. Sov-remennыe tekhnolohyy ahrehatno-sborochnoho proyzvodstva letatelnыkh ap-paratov. – M.: Ahraf-press, 2006. – 304 s.
Tolstoi S. A. Kompleksnyi pidkhid do zabezpechennia mekhanizatsii ta avtomatyzatsii skladalnykh robit na vitchyznianykh aviabudivnykh pidpryiemstvakh. – Materialy XVII naukovo-tekhnichnoi konferentsii studentiv, aspirantiv, doktorantiv ta molodykh uchenykh. – K.: NAU, Instytut novitnikh tekhnolohii ta liderstva, 2020.– S. 20-25.
Kolhanov, Y. M., Dubrovskyi, P. V., Arkhypov, A. N. Tekhnolohychnost avyat-syonnыkh konstruktsyi. Puty povыshenyia (chast 1). – Ulianovsk: UlHTU, 2003. – 148 s.
Kryvov, H. A., Matvyenko, V. A. Konkurentosposobnost v sovremen-nom avyastro-enyy. Puty dostyzhenyia y podderzhanyia. – Tekhnolohycheskye sys-temы,2006. – Vyp. 2. – S. 16-22.
Matvyenko, V. A., Hyrsh R. Y., Stryzhyus V.E., Pastushenko V.N., Tol-stoi S.A., Shy-tokha E.H., Eremyn M.V. Mekhanyzyrovannыe tekhnolohyy y ynstru-ment dlia vыpolnenyia zaklepochnыkh y bolt-zaklepochnыkh soedynenyi эlementov kon-struktsyy planera samoletov semeistva SSJ. – Tekhnolohycheskye systemы, 2009. – Vyp. 5. – S. 100-106.
Chorna T. M., Hozhulovskyi S. S. Suchasni tendentsii ta napriamky roz-vytku avi-abuduvannia v Ukraini. – Ekonomichni horyzonty, 2017. – Vyp. 1 (2). – S. 29-34.
RTM 1.4.1864 Sborka ahrehatov shyrokofiuzeliazhnыkh samoletov.
OST 1.42064 Sborka samoletov. Termynы y opredelenyia.
Tereshchenko, Yu. M., Volianska, L. H., Zhyvotovska, K. A. ta in., za red. Yu. M. Te-reshchenka. Tekhnolohiia vyrobnytstva litalnykh aparativ: Pidruchnyk; U 2 kn. – Kn. 2. Tekhnolohiia skladannia litalnykh aparativ. – K.: Knyzhkove vydavnytstvo NAU, 2006. – 492 s.
OST 1.42140 Stыkovka ahrehatov tiazhelыkh typov yzdelyi s pomo-shchiu lazernoi tsentryruiushchei yzmerytelnoi systemы. Metodы kontrolia.
DiegoAlonsoTabares, Félix Mora-Camino. Aircraft Ground Handling: Analysis for Au-tomation. – Materials for 17th AIAA Aviation Technology, Integration, and Operations Conference. – Denver, Colorado, 2017.
Kryvtsov, V. S., Voronko V. V., Zaitsev, V. E. Sovremennыe perspe-ktyvы razvytyia tekhnolohy sborky avyatsyonnыkh konstruktsyi. – Naukainnov., 2015. – Vyp. 11 (3). – S. 12-20.
Abybov B. A. Tekhnolohyia samoletostroenyia: ucheb. posobye. – M.: Mashynostro-enye, 1982. – 357 s.
OST1.41085 Tekhnolohychnost konstruktsyi ahrehatov. Osnovnыe poniatyia. Ob-shchye polozhenyia.
OST 1.41711 Konstruktorsko-tekhnolohycheskaia otrabotka ahrehatov. Poriadok provedenyia.
OST 1.41708 Tekhnolohycheskoe obespechenye razrabotky y postano-vky na proyzvodstvo LA. Poriadok otrabotky konstruktsyy yzdelyia na proy-zvodstvennuiu tekhnolohychnost.
Maltsev, O. Yu., Tolstoi, S. A., Konotop, D. I., Sukhov, V. V. Osobly-vosti skladannia planeriv litakiv, yaki mistiat elementy iz kompozytsiinykh materi-aliv. – Vidkryti infor-matsiini ta kompiuterni tekhnolohii, 2022. – Vyp. 95. – S. 29-44.
DOI: https://doi.org/10.32620/oikit.2023.97.08
Refbacks
- There are currently no refbacks.