THEORETICAL MODEL OF FORMATION OF TWO-DIMENSIONAL NANOSTRUCTURES OF VERTICAL GRAPHENE UNDER THE ACTION OF PLASMA

О. О. Баранов

Abstract


Vertically oriented graphene nanostructures have been grown for more than decade, but the mechanisms of their formation are still unclear. A multifactor model is proposed, which is verified by comparison with experimental data and describes the processes of growth of the structure of vertical graphene in plasma. The role of chemical and physical processes that cannot be directly characterized by available experimental methods, such as surface diffusion of adatoms and radicals under the action of ions, has been studied. Ion bombardment is a key factor that significantly accelerates the growth rate through the formation of surface defects and, consequently, increases the energy of surface adsorption. Hydrocarbon radicals formed on the substrate under the bombardment diffuse to the graphene nanosheets and serve as the main source of the construction material. Thus, the leading role in the formation of vertical graphene belongs to surface diffusion, rather than direct deposition from the gas phase. The temperature of the sample is also an important parameter, which affects the growth process according to the following mechanism: at low temperatures the adsorption from the gas phase is more intense, but the diffusion processes are slowed down; elevated temperatures have the opposite effect. The surface density of graphene nanosheets, which can be controlled at the stage of nucleation, strongly affects the height of the structure due to the redistribution of ion fluxes during the growth: as the nanosheets grow, the ion current density decreases to the side edge of the sheet and increases to the upper edge. This process leads to a decrease in the ion current density at the side edge of the nanosheet, and, as a consequence, to a change in the dependence of the graphene sheet length on time: from a saturated curve or a quasilinear time dependence to a parabolic dependence. The assumption of surface diffusion of hydrocarbon radicals as the dominant growth mechanism is consistent with existing experimental data; these results confirm the physical model, and also bring a deeper understanding of the physics of growth of vertical graphene.


Keywords


nanotechnology, plasma, vertical graphene, nanostructure growth methods

References


Nanoscale Memory Devices / A. Chung, J. Deen, J. S. Lee, M. Meyyappan // Nanotechnology. – 2010. – №21. – P. 412001.

Ostrikov, K. Plasma nanoscience: setting directions, tackling grand challenges / K. Ostrikov, U. Cvelbar, A. B. Murphy // Journal of Physics D: Applied Physics. – 2011. – No. 44. – P. 174001.

Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale / I. Levchenko, K. Bazaka, M. Keidar, S. Xu, J. Fang // Advanced Materials. – 2018. – No. 30. – P. 1702226.

Structural stability, magneto-electronics and spin transport properties of triangular graphene nanoflake chains with edge oxidation / R. Hu, Z. Q .Fan, C. H. Fu, L. Y. Nie, W. R. Huang, Z. H. Zhang // Carbon. – 2018. – No. 126. – P. 93-104.

Scalable graphene production: perspectives and challenges of plasma applications / I. Levchenko, K. Ostrikov, J. Zheng, X. Li, M. Keidar, K. B. K. Teo // Nanoscale. – 2016. – No. 8. – P. 10511.

Wohner, N. Energetic stability of graphene nanoflakes and nanocones / N. Wohner, P. Lam, K. Sattler // Carbon. – 2014. – No. 67. – P. 721-735.

Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis / O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko // Applied Physics Reviews. – 2017. – No. 4. – P. 041302.

Plasma-assisted self-organized growth of uniform carbon nanocone arrays / Z. L. Tsakadze, I. Levchenko, K. Ostrikov, S. Xu // Carbon. – 2007. – No. 45. – P. 2022-2030.

Synthesis and in-situ oxygen functionalization of deposited graphene nanoflakes for nanofluid generation / U. Legrand, N.-Y. Mendoza Gonzalez, P. Pascone,

J.-L. Meunier, D. Berk // Carbon. – 2016. – No. 102. – P. 216-223.

Vovusha, H. Adsorption of Nucleobases on 2D Transition-Metal Dichalcogenides and Graphene Sheet: A First Principles Density Functional Theory Study / H. Vovusha, S. Sanyal, B. Sanyal // Journal of Physical Chemistry Letters. – 2013. – No. 4. – P. 3710-3718.

Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene / J. Li, X. Cheng, A. Shashurin, M. Keidar // Graphene. – 2012. – No. 1. – P. 1–13.

Chen, J. Graphene Materials for Electrochemical Capacitors / J. Chen, C. Li, G. Shi // Journal of Physical Chemistry Letters. – 2013. – No. 4. – P. 1244–1253.

Plasma meets metamatertials: Three ways to advance space micropropulsion systems / I. Levchenko, S. Xu, O. Cherkun, O. Baranov, K. Bazaka // Advances in Physics X. – 2020. –V. 6, No. 1. – P. 1834452.

Laminated Magnetic Graphene with Enhanced Electromagnetic Wave Absorption Properties / X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue // Journal of Materials Chemistry C. – 2013. – No. 1. – P. 765–777.

Carbon Nanotube with Chemically Bonded Graphene Leaves for Electronic and Optoelectronic Applications / K. Yu, G. Lu, Z. Bo, S. Mao, J. Chen // Journal of Physical Chemistry Letters. – 2011. – No. 2. – P. 1556–1562.

Enhanced Field Emission of Vertically Oriented Carbon Nanosheets Synthesized by C₂H₂/H₂ Plasma Enhanced CVD / M. Y. Zhu, R. A. Outlaw, M. Bagge-Hansen, H. J. Chen; D. M. Manos // Carbon. – 2011. – No. 49. – P. 2526–2531.

Low-Temperature Graphene Synthesis Using Microwave Plasma CVD / T. Yamada, J. Kim, M. Ishihara, M. Hasegawa // Journal of Physics D: Applied Physics. – 2013. – No. 46. – P. 063001.

Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: A platform for high-rate performance battery electrodes / B. Ouyang, D. Chao, G. Jia, Z. Zhang, H. J. Fan, R. S. Rawat // Energy Storage Materials. – 2019. – No. 18. – P. 462-469.

Vertically-oriented graphene nanowalls: Growth and application in Li-ion batteries / Q. Yang, J. Wu, S. Li, L. Zhang, J. Fu, F. Huang, Q. Cheng // Diamond and Related Materials. – 2019. – No. 91. – P. 54-63

Oriented Carbon Nanostructures by Plasma Processing: Recent Advances and Future Challenges / N. M. Santhosh, G. Filipič, E. Tatarova, O. Baranov, H. Kondo, M. Sekine, M. Hori, K. Ostrikov, U. Cvelbar // Micromachines. – 2018. – V. 9, No. 11. – P. 565.

Multi-Pin DC Glow Discharge PECVD for Uniform Growth of Vertically Oriented Graphene at Atmospheric Pressure / Z. Bo, W. Ma, P. Wang, E. Wu, W. Yang, K. Yu, X. Zhang, J. Yan, K. Cen // Physica Status Solidi B. – 2014. – No. 251. – P. 155–161.

Fast Response, Vertically Oriented Graphene Nanosheet Electric Double Layer Capacitors Synthesized from C2H2 / M. Cai, R. A. Outlaw, R. A. Quinlan, D. Premathilake, S. M. Butler, J. R. Miller // ACS Nano. – 2014. – No. 8. – P. 5873–5882.

Xie, L. Selective Etching of Graphene Edges by Hydrogen Plasma / L. Xie, L. Jiao, H. Dai // Journal of the American Chemical Society. – 2010. – No. 132. – P. 14751–14753.

Growth of Graphene on Cu by Plasma Enhanced Chemical Vapor Deposition / T. Terasawa, K. Saiki // Carbon. – 2012. – No. 64. – P. 869–874.

Towards a General Growth Model for Graphene CVD on Transition Metal Catalysts / A. Cabrero-Vilatela, R. S. Weatherup, P. Braeuninger-Weimer, S. Caneva, S. Hofmann // Nanoscale. – 2016. – No. 8. – P. 2149–2158.

Formation of vertically oriented graphenes: what are the key drivers of growth? / O. Baranov, I. Levchenko, S. Xu, J. W. M. Lim, U. Cvelbar and K. Bazaka // 2D Materials. – 2018. – No. 5. – P. 044002.

Tuning and fine morphology control of natural resource-derived vertical graphene / S. Alancherry, M.V. Jacob, K. Prasad, J. Joseph, O. Bazaka, R. Neupane, O. K. Varghese, O. Baranov, S. Xu, I. Levchenko, K. Bazaka // Carbon. – 2020. – No. 159. – P. 668-685.

Vertical Growth of Carbon Nanowalls Using RF Plasma-Enhanced Chemical Vapor Deposition / K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, M. Hori // Diamond and Related Materials. – 2005. – No. 14. – P. 831–834.

A Growth Mechanism for Free-Standing Vertical Graphene / J. Zhao, M. Shaygan, J. Eckert, M. Meyyappan, M. H. Rummeli // Nano Letters. – 2014. – No. 14. – P. 3064–3071.

Mehdipour, H. Kinetics of Low-Pressure, Low-Temperature Graphene Growth: Toward Single-Layer, Single-Crystalline Structure / H. Mehdipour, K. Ostrikov // ASC Nano. – 2012. – V. 6, No. 11. – P. 10276–10286.

Zhang, Z. Vertically Aligned Graphene Nanosheet Arrays: Synthesis, Properties and Applications in Electrochemical Energy Conversion and Storage / Z. Zhang, C.-S. Lee, W. Zhang // Advanced Energy Materials. – 2017. – No. 7. – P. 1700678.

Initial growth process of carbon nanowalls synthesized by radical injection plasmaenhanced chemical vapor deposition / S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, M. Hori // Journal of Applied Physics. – 2009. – No. 106. – P. 094302.

Kittel, C. Thermal physics / C. Kittel, H. Kroemer. – New York: W. H. Freeman and Co. – 1980. – 475 p.

Graphene flakes in arc plasma: conditions for the fast single-layer growth / I. Levchenko, U. Cvelbar, M. Keidar // Graphene. – 2016. – No. 5. – P. 81–89.

A Mechanism for Carbon Nanosheet Formation / M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan; D. M. Manos // Carbon. – 2007. – No. 45. – P. 2229–2234.

Growth dynamics of copper oxide nanowires in plasma at low pressures / G. Filipič, O. Baranov, M. Mozetič, U. Cvelbar // Journal of Applied Physics. – 2015. – No. 117. – P. 043304.

Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets / Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, K. Cen // Nanoscale. – 2013. – No. 5. – P. 5180–5204.

Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition / K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D. A. Kovalenko, M. H. Rummeli, J. Opitz, G. Cuniberti, J. S. Lee, M. Meyyappan // Carbon. – 2014. – No. 72. – P. 372–380.

Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors / G. Filipič, O. Baranov, M. Mozetič, K. Ostrikov, U. Cvelbar // Physics of Plasmas. – 2014. – No. 21. – P. 113506.

Chen, F. F. Introduction to Plasma Physics and Controlled Fusion / F. F. Chen. – New York: Plenum Press. – 1984. –421 p.

Polyanin, A. D. Handbook of Exact Solutions for Ordinary Differential Equations / A. D. Polyanin, V. F. Zaitsev. – Boca Raton: Chapman & Hall/CRC. – 2003. – 788 p.

Density-functional calculation of methane adsorption on graphenes / X.-P. Chen, N. Yang, J.-M. Ni, M. Cai, H.-Y. Ye, C. K. Y. Wong, S. Y. Y. Leung, T.-L. Ren // IEEE Transactions on Electron Devices. – 2015. – V. 36, No. 1. – P. 1366–1368.

Gallouze, M. Adsorption isotherms of H2 on defected graphene: DFT and Monte-Carlo studies / M. Gallouze, A. Kellou, M. Drir // International Journal of Hydrogen Energy. – 2016. – V. 41, No. 12. – P.5522–5530.

Lieberman, M. A. Principles of Plasma Discharges for Materials Processing / M. A. Lieberman, A. J. Lichtenberg. – New York: Wiley Interscience. – 2005. – 757 p.

Anders, A. Handbook of Plasma Immersion Ion Implantation and Deposition / A. Anders. – New York: John Wiley & Sons. – 2000. – 540 p.

Hydrogen adsorption on graphene: a first principles study / V. V. Ivanovskaya, A. Zobelli, D. Teillet-Billy, N. Rougeau, V. Sidis, P. R. Briddon // European Physical Journal B. – 2010. – No. 76. – P. 481–486.

Dean, J. A. Lange's Handbook of Chemistry / J. A. Dean, 15th edition. – New York: McGraw-Hill. – 1992. – 1292 p.

Structures C–H and C–CH3 bond energies at borders of polycyclic aromatic hydrocarbons / K. May, S. Dapprich, F. Furche, B. V. Unterreiner, R. Ahlrichs // Physical Chemistry Chemical Physics. – 2000. – No. 2. – P. 5084–5088.

Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge / V. A. Krivchenko, V. V. Dvorkin, N. N. Dzbanovsky, M. A. Timofeyev, A. S. Stepanov, A. T. Rakhimov, N. V. Suetin, O. Yu. Vilkov, L. V. Yashina // Carbon. – 2012. – No. 50. – P. 1477–1487.

Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology / Y. Zhang, J. Du, S. Tang, P. Liu, S. Deng, J. Chen, N. Xu // Nanotechnology. – 2012. – No. 23. – P. 015202.

Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition / J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway // Carbon. – 2004. – No. 42. – P. 2867–2872.

Substrate temperature effect on the growth of carbon nanowalls synthesized via microwave PECVD / S. Y. Kim, W. S. Choi, J.-H. Lee, B. Hong // Materials Research Bulletin. – 2014. – No. 58. – P. 112–116.

CVD growth and field emission properties of nanostructured carbon films / A. N. Obraztsov, A. P. Volkov, K. S. Nagovitsyn, K. Nishimura, K. Morisawa, Y. Nakano, A. Hiraki // Journal of Physics D. – 2002. – No. 35. – P. 357–362.




DOI: https://doi.org/10.32620/oikit.2021.91.09

Refbacks

  • There are currently no refbacks.