CLASSIFICATION METHOD OF OPTICS AND LASER PHYSICS PROBLEMS

Г. М. Хорошун

Abstract


In recent decades, due to the use of computer technology, the results of research in a particular area of science and technique are accumulated very quickly. In the process of creating a database of optical images and knowledge base is appeared the task of classification method absence. Without such a method the creating the structure of data warehouse is difficult to solve. The classification of the tasks and the obtained results requires considerable attention in order to ensure their rapid and accurate search and further use. Classification is one of the most important tasks of large database analysis used in Data Mining. Assessment of classification accuracy can be performed using cross-checking or a test set. The proposed method is suitable for use when the accuracy of the test set classification meets the established requirements. In the field of optics and laser physics dealt with the problem, which usually is grouped by the next attributes: the initial field pattern, the type of the optical system, the characteristics of the obtained spatial distribution of light as the number of maxima, minima, zeros of intensity and other significant objects. The question of classification of the tasks themselves was considered in the paper for the first time. The method of classification of problems in optics and laser physics is developed. It is applied to the problems of diffraction, interference and observation of microobjects. The classification is carried out with the help of mathematical methods, a formal description of the objects and the decision trees method. The 5 classes was chosen: "meaning the task", "solution method", "appointment", "complexity", "way of expression." The attributes of the problem classification are "visual-optical", "optical", "computational", "experimental", "qualitative", "fundamental", "applied", "simple", "complex", "textual", "numerical", "graphical". The scheme of problems in optics and laser physics classification is shown. Decision-making to determine the attributes of the problem is carried out using the decision trees method. Application of the results in search engines of big databases and pattern recognition problems is discussed.


Keywords


classification of tasks; decision tree; optical image

References


Квєтний, Р. Н., and О. А. Ремінний. "Високошвидкісний метод класифікації зображень." (2009).

Lu, D. , & Weng, Q. A. (2007). Survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing , 28, 823–870

Manandhar, R. , Odeh, I. O. , & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing , 1, 330–344

Дейт К. Дж. Введение в системы баз данных . — 8-е изд. — М.: «Вильямс». - 2006. — ISBN 0-321-19784-4. — 1328 с.

Ситник В.Ф., Краснюк М.Т. Інтелектуальний аналіз даних (дейтамайнінг) К.: КНЕУ, 2007. – 367 c.

Gorokhovatskyi, V. and Polyakova, T. (2018), The use of spatial structures of signs for the classification of images in computer vision, FLP Panov A.N., Kharkov, 120 p.

Gorokhovatskyi, V. and Solodchenko, K. (2018), “The application system analysis and processing of the data bit in the methods of image classification for multiple key points”, Control, navigation and communication systems, No. 2 (48), pp. 63–67.

Хорошун Г. М., Метод опису явища дифракції по сукупності топологічних об’єктів та алгоритм розрізняння мінімуму від нуля інтенсивності, Харків, Сучасні Інформаційні Системи, прийнято до друку, вересень. – 2020

Паклин Н.Б., Орешков В.И. Бизнес-аналитика: от данных к знаниям: Учеб. пособие. 2-е изд., перераб. и доп. - СПб.: Питер, 2010. – 704 с.

Khoroshun G., Luniakin R., Riazantsev A., Ryazantsev O., Skurydina T., Tatarchenko H. The Development of an Application for Microparticle Counting Using a Neural Network, Proceedings of the 4th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2020). Volume I: Main Conference, p. 1186-1195

Khoroshun A.N. Optimal linear phase mask for the singular beam synthesis from a Gaussian beam and the scheme of its experimental realization, Journal of Modern Optics Vol. 57, No. 16, 20 September 2010, 1542–1549

Bekshaev A, Chernykh A, Khoroshun A, Masajada J, Popiołek-Masajada A, Ryazantsev A. Controllable singular skeleton formation by means of the Kummer optical-vortex diffraction at a rectilinear phase step. Journal of Optics. 2020 Nov 27.

Khoroshun, A. N., Chernykh, A. V., Tatarchenko, H. O., Bekshaev, A. Y., & Akhmerov, A. A. (, January). Laguerre-Gaussian beam transformations by the double-phase-ramp converter: Singular skeleton formation and its sensitivity to small misalignments. In Thirteenth International Conference on Correlation Optics, SPIE, 2018 (Vol. 10612, p. 1061203).

Полицинский Е.В. Физика. Понимание учебного материала через решение физических задач. Учебное пособие: учебное пособие / Е.В. Полицинский. – ИПЛЮТИ ТПУ, 2004 – 114 с.




DOI: https://doi.org/10.32620/oikit.2020.90.09

Refbacks

  • There are currently no refbacks.