GENERALIZATION OF THE VOLKERSEN MODEL IN THE CASE OF AXIAL SYMMETRY

К. П. Барахов

Abstract


Thin-walled structures may contain defects as cracks and holes that are leftovers of the material the construction, is made of or they occur during the operation as a result of, for example, mechanical damage. The presence of holes in the plate causes a concentration of stresses at the boundary of the holes and ultimately leads to premature failure of the structural element. Repair of local damage of modern aircraft structures can be made by creating overlays that are glued to the main structure. The overlay takes on part of the load, unloading the damaged area. This method of repair provides tightness and aerodynamic efficiency to the structure. The calculation of the stress state of such glued structures is usually performed by using the finite element method. The classic models of the stress state of overlapped joints are one-dimensional. That is, the change of the stress state along only one coordinate is considered. At the same time, the connections of a rectangular form are also considered. The purpose of this work is to create a mathematical model of the stress state of circular axisymmetric adhesive joints and to build an appropriate analytical solution to the problem. It is assumed that the bending of the plates is absent; the deformation of the plates is even by thickness. The adhesive layer works only on the shift. The main plate and the overlay are considered isotropic. The solution is built on polar coordinates. The stress state of the connection depends only on the radial coordinate, i.e. one-dimensional. The solution is obtained in analytical form. This mathematical model is a generalization of the classical model of the adhesive connection of Volkersen to a circular or annular region and is considered for the first time. Boundary conditions are met exactly. The satisfaction of marginal conditions, as well as boundary conditions, leads to a system of linear equations with respect to the unknown coefficients of the obtained solutions. The model problem is solved and the numerical results are compared with the results of calculations performed by using the finite element method. It is shown that the proposed model has sufficient accuracy for engineering problems and can be used to solve problems of the design of aerospace structures.

Keywords


adhesive bonding; axisymmetric model; analytical solution; round plate

References


Tomblin J. S., Salah L., Welch J. M., Borgman M. D. Bonded Repair of Aircraft Composite Sandwich Structures // Report DOT/FAA/AR-03/74. 2004.

Baker A. A., Rose L. R. F., Jones R. Advances in the Bonded Composite Repair of Metallic Aircraft Structures. Vol. 1. Elsevier: Oxford, 2002. 575 p.

Fedotov A. A., Cipenko A. V. Analiticheskaya model' kleevogo remonta povrezhdenij obshivki letatel'nogo apparata s uchetom degradacii svojstv materiala // Nauchnyj vestnik MGTU GA. 2016. № 19(6), S. 118–126.

Bakuckas J. G., Chadha R., Swindell P., Fleming M., Lin J. Z., Ihn J. B., Freisthler M. Bonded Repairs of Composite Panels Representative of Wing Structure // Lecture Notes in Mechanical Engineering. 2019. P. 565–580. doi: 10.1007/978-3-030-21503-3_45.

Okafor A., Singh N., Enemuoh U. E., Rao S. V. Design, analysis and performance of adhesively bonded composite patch repair of cracked aluminum aircraft panels // Composite Structures. 2005. Vol. 71. P. 258–270. doi: 10.1016/j.compstruct.2005.02.023.

Tsouvalis N. G., Mirisiotis L. S., Dimou D. N. Experimental and numerical study of the fatigue behaviour of composite patch reinforced cracked steel plates // International Journal of Fatigue. 2009, Vol. 31. P. 1613–1627. doi: 10.1016/j.ijfatigue.2009.04.006.

Sabelkin V., Mall S., Hansen M. A., Vandawaker R. M., Derriso M. Investigation into cracked aluminum plate repaired with bonded composite patch // Composite Structures. 2007. Vol. 79. P. 55–66. doi:10.1016/j.compstruct.2005.11.028.

Fedotov A. A., Cipenko A. V., Lebedev A. I. Chislennoe modelirovanie kleevogo remontnogo soedineniya // Nauchnyj Vestnik MGTU GA. 2018. T. 21. № 3, S. 125–138. doi: 10.26467/2079-0619-2018-21-3-125-138.

Zemlyanova A. Yu., Sil’vestrov V. V. The problem of the reinforcement of a plate with a cutout by a two-dimensional patch // Journal of Applied Mathematics and Mechanics. 2007. Vol. 71. P. 40–51. doi: 10.1016/j.jappmathmech.2007.03.012.

Sil'vestrov V. V., Zemlyanova A. Yu. Remont plastiny s krugovym vyrezom posredstvom zaplatki // Prikladnaya mexanika i texnicheskaya fizika. 2004. T. 45. № 4. S. 176–183.

Zemlyanova A. Y. Reinforcement of a plate weakened by multiple holes with several patches for different types of plate-patch attachment // Mathematics and Mechanics of Solids. 2016. Vol. 21. № 3. P. 281–294. doi: 10.1177/1081286513519812.

da Silva L. F. M., das Neves P. J. C., Adams R. D., Spelt J. K. Analytical models of adhesively bonded joints. Part I: Literature survey // Int. J. Adhes. Adhesiv. 2009. Vol. 29. P. 319–330. doi: 10.1016/j.ijadhadh.2008.06.005.

Zhang X., Wu J., Fan Z., Yang S., Huang F., & Wang A. Cohesive shear stress and strength prediction of composite patch bonded to metal reinforcement // International Journal of Adhesion and Adhesives: 2019. Vol. 90. P. 144–153. doi:10.1016/j.ijadhadh.2019.02.008.

Kurennov S. S. Koshevoi A. G., Polyakov A. G. Through-Thickness Stress Distribution in the Adhesive Joint for the Multilayer Composite Material // Russian Aeronautics (Iz. VUZ). 2015. V. 58. № 2. P. 145–151. doi: 10.3103/S1068799815020026.

Lee J., Cho M., Kim H. S. Bending analysis of a laminated composite patch considering the free-edge effect using a stress-based equivalent single-layer composite model // International Journal of Mechanical Sciences. 2011. Vol. 53. Iss. 8. P. 606–616. doi: 10.1016/j.ijmecsci.2011.05.007.

Rapp P. Mechanics of adhesive joints as a plane problem of the theory of elasticity. Part II: Displacement formulation for orthotropic adherends // Archives of Civil and Mechanical Engineering. 2015. Vol. 15. I. 2, P. 603–619. doi: 10.1016/j.acme.2014.06.004.

Kurennov S. S. An Approximate Two-Dimensional Model of Adhesive Joints. Analytical Solution // Mechanics of Composite Materials. 2014. Vol. 50. № 1, P. 105–114. doi: 10.1007/s11029-014-9397-z.

Kurennov S. S. Determining Stresses in an Adhesive Joint with a Longitudinal Unadhered Region Using a Simplified Two-Dimensional Theory // Journal of Applied Mechanics and Technical Physics. 2019. Vol. 60(4). P. 740–747. doi: 10.1134/s0021894419040199.

Kurennov S. S. A Simplified Two-Dimensional Model of Adhesive Joints. Nonuniform Load // Mechanics of Composite Materials. 2015. Vol. 51. P. 479–488. DOI: 10.1007/s11029-015-9519-2.

Kurennov S. S., Barakhov K. P. Napriazhennoe sostoianie dvukhsloinoi priamougol'noi plastinki pri sdvige. Uproshchennaia dvumernaia model // PNRPU Mechanics Bulletin. 2019, № 3. P. 166–174. DOI: 10.15593/perm.mech/2019.3.16.

Kim H. S., Cho M., Lee J., Deheeger A., Grédiac M., Mathias J.-D. Three dimensional stress analysis of a composite patch using stress functions // International Journal of Mechanical Sciences. 2010. Vol. 52(12). P. 1646–1659. doi: 10.1016/j.ijmecsci.2010.08.006.

Kessentini R., Klinkova O., Tawfiq I., Haddar M. Transient hygro-thermo-mechanical stresses analysis in multi-layers bonded structure with coupled bidirectional model // International Journal of Mechanical Sciences. 2019. Vol. 150. P. 188–201. doi:10.1016/j.ijmecsci.2018.10.004.

Lubkin J. L., Reissner E. Stress distribution and design data for adhesive lap joints between circular tubes // Trans. ASME. 1956. № 78. P. 1213–1221.

Selahi E. Elasticity solution of adhesive tubular joints in laminated composites with axial symmetry // Archive of Mechanical Engineering. 2018. Vol. LXV, № 3. P. 441–456. doi: 10.24425/124491.

Kurennov S. S., Barakhov K. P., Poliakov A. G. Stressed State of the Axisymmetric Adhesive Joint of Two Cylindrical Shells under Axial Tension // Materials Science Forum. 2019, Vol. 968. P. 519–527. DOI: 10.4028/www.scientific.net/MSF.968.519.




DOI: https://doi.org/10.32620/oikit.2020.90.06

Refbacks

  • There are currently no refbacks.