APPLICATION OF ION-PLASMA METHODS TO OBTAIN THIN-FILM FUEL CELLS
Abstract
New demands on aircraft operating systems, along with ever-increasing demands for reduced fuel consumption, pollutant emissions and noise, are driving the search for new cleaner technologies in which fuel cells show great potential. The work demonstrates the achieved level of development of thin-film composite materials using ion-plasma and plasma-chemical methods at JSC FED, which allows creating the prerequisites for changing properties in relation to traditional materials by 2…3 and more orders of magnitude, reducing the operating temperature to 400...600 °C. This makes it possible to develop fundamentally new designs of thin-film fuel cells (10-20 times less thick than the tubular version) and serial technologies for their manufacture in the following directions: application of thin-film compositions to the developed structure, taking into account technological limitations for different deposition methods; obtaining composite materials, which consist of layers: gas-tight electrolyte and electrode layers with thin-film current-collecting contacts; ensuring the separation of gas mixtures with a ceramic electrolyte layer with a thickness of < 50...20 microns; minimizing the thickness of the electrolyte film and other functional layers of the fuel cell; increasing the adhesion strength of layers and corrosion resistance of current-collecting contacts and electrode layers in working environments to ensure the operability of the structure throughout the entire operation process.
Keywords
Full Text:
PDF (Українська)References
Sürer, M. G. State of art of hydrogen usage as a fuel on aviation [Text] / M. G. Sürer, H. T. Arat // European Mechanical Science. – 2018. – Vol. 2, iss. 1. – P. 20–30. doi: 10.26701/ems.364286
SOFC-APU systems for aircraft: A review [Text] / M. D. Fernandes, S. D. P. Andrade, V. N. Bistritzki et al. // International Journal of Hydrogen Energy. – 2018. – Vol. 43, iss. 33. – P. 16311–16333. doi: 10.1016/j.ijhydene.2018.07.004
Solid oxide fuel cell (SOFC); A new approach of energy generation during the pandemic COVID-19 [Text] / S. Afroze, M. S. Reza, Q. Cheok et al. // International Journal of Integrated Engineering. – 2020. – Vol. 12, iss. 5. – P. 245–256. doi: 10.30880/ijie.2020.12.05.030
Rajashekara, K. Hybrid fuel cell power in aircraft [Text] / K. Rajashekara, J. Grieve, D. Daggett // IEEE Industry Applications Magazine. – 2008. – Vol. 14, iss. 4. – P. 54–60. doi: 10.1109/MIAS.2008.923606
Azizi, M. A. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization [Text] / M. A. Azizi, J. Brouwer // Applied Energy. – 2018. – Vol. 215. – P. 237–289. doi: 10.1016/j.apenergy.2018.01.098
SAE AS 6858. Installation of Fuel Cell Systems in Large Civil Aircraft [Text]. – SAE International, 2017. – 35 p. doi: 10.4271/AS6858
SAE AIR 6464. EUROCAE/SAE WG80/AE-7AFC Hydrogen Fuel Cells Aircraft Fuel Cell Safety Guidelines [Text]. – SAE International, 2020. – 42 p. doi: 10.4271/AIR6464
Установка Avinit для нанесення багатошарових функціональних покриттів [Текст] / А. В. Сагалович, О. В. Кононихін, В. В. Попов та ін. // Физическая инженерия поверхности. – 2010. – Т. 8. – С. 336–347.
Экспериментальные исследования покрытий типа Avinit [Текст] / А. В. Сагалович, А. В. Кононыхин, В. В. Попов и др. // Авиационно-космическая техника и технология. – 2011. – № 3. – С. 5–15.
Технологічні схеми формування багатошарових покриттів «Avinit» [Текст] / О. В. Сагалович, О. В. Кононихін, В. В. Попов та ін. // Вісник двигунобудування. – 2011. – № 1. – С. 33–45.
Еxperimental research of multicomponent multilayer ion-plasma Avinit coatings [Text] / A. V. Sagalovych, A. V. Kononyhin, V. V. Sagalovych et al. // Физическая инженерия поверхности. – 2012. – Т. 10, № 4. – С. 229–236.
Нанесение покрытий на сложнопрофильные прецизионные поверхности газофазным методом (CVD) / А. В. Сагалович, А. В. Григорьев, А. В. Кононыхин и др. // Физическая инженерия поверхности. – 2011. – Т. 9, № 3. – С. 229–236.
References
Sürer, M. G., Arat, H. T. State of art of hydrogen usage as a fuel on aviation. European Mechanical Science, 2018, vol. 2, iss. 1, pp. 20–30. doi: 10.26701/ems.364286
Fernandes, M. D., Andrade, S. D. P., Bistritzki, V. N., Fonseca, R. M., Zacarias, L. G., Gonçalves, H. N. C., de Castro, A. F., Domingues, R. Z., Matencio, T. SOFC-APU systems for aircraft: A review. International Journal of Hydrogen Energy, 2018, vol. 43, iss. 33, pp. 16311–16333. doi: 10.1016/j.ijhydene.2018.07.004
Afroze, S., Reza, M. S., Cheok, Q., Taweeku, J., Azad, A. K. Solid oxide fuel cell (SOFC); A new approach of energy generation during the pandemic COVID-19. International Journal of Integrated Engineering, 2020, vol. 12, iss. 5, pp. 245–256. doi: 10.30880/ijie.2020.12.05.030
Rajashekara, K., Grieve, J., Daggett, D. Hybrid fuel cell power in aircraft. IEEE Industry Applications Magazine, 2008, vol. 14, iss. 4, pp. 54–60. doi: 10.1109/MIAS.2008.923606
Azizi, M. A., Brouwer, J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization. Applied Energy, 2018, vol. 215, pp. 237–289. doi: 10.1016/j.apenergy.2018.01.098
SAE AS 6858. Installation of Fuel Cell Systems in Large Civil Aircraft. SAE International, 2017, 35 p. doi: 10.4271/AS6858
SAE AIR 6464. EUROCAE/SAE WG80/AE-7AFC Hydrogen Fuel Cells Aircraft Fuel Cell Safety Guidelines. SAE International, 2020, 42 p. doi: 10.4271/AIR6464
Sagalovich, A. V., Kononikhіn, A. V., Popov, V. V., Dudnіk, S. F., Sagalovich, V. V. Ustanovka Avinit dlya nanesennya bagatosharovikh funktsіonal'nikh pokrittіv [Installation Avinit for applying multi-functional coatings]. Fizicheskaya inzheneriya poverkhnosti – Physical surface engineering, 2010, vol. 8, pp. 336–347
.
Sagalovich, A. V., Kononykhin, A. V., Popov, V. V., Dudnik, S. F., Sagalovich, V. V. Eksperimental'nye issledovaniya pokrytiy tipa Avinit [Experimental studies of Avinit type coatings]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2011, vol. 3, pp. 5–15.
Sagalovich, O. V., Kononikhіn, O. V., Popov, V. V., Dudnіk, S. F., Sagalovich, V. V. Tekhnologіchnі skhemi formuvannya bagatosharovikh pokrittіv «Avinit» [Technological schemes of formation of multilayer coverings "Avinit"]. Vіsnik dvigunobuduvannya – Herald of Aeroenginebuilding, 2011, vol. 1, pp. 33–45.
Sagalovych, A. V., Kononykhin, A. V., Popov, V. V., Sagalovych, V. V. Еxperimental research of multicomponent multilayer ion-plasma Avinit coatings. Fizicheskaya inzheneriya poverkhnosti – Physical surface engineering, 2012. vol. 10, no. 4, pp. 229–236.
Sagalovich, A. V., Grigor'ev, A. V., Kononykhin, A. V., Popov, V. V., Sagalovich, V. V. Nanesenie pokrytiy na slozhnoprofil'nye pretsizionnye poverkhnosti gazofaznym metodom (CVD) [Coating of complex precision surfaces by the gas phase method (CVD)]. Fizicheskaya inzheneriya poverkhnosti – Physical surface engineering, vol. 9, no. 3, pp. 229–236.
DOI: https://doi.org/10.32620/oikit.2020.89.05
Refbacks
- There are currently no refbacks.