SELECTIONS PARAMETERS OF SELECTIVE LASER MELTING FOR METAL POWDERS

В. Є. Зайцев, А. С. Полупан

Abstract


The article deals with the issues of determining the optimal parameters of the selective laser melting (SLM) process in order to develop a technology for manufacturing aircraft structural elements from titanium alloys. This literature review notes the advantages of titanium alloys, which have higher specific strength and corrosion resistance compared to most steels and aluminum alloys. It is determined that traditional methods of forming titanium parts lead to a large amount of material waste, high production costs and long production times. It is noted that the SLM technology makes it possible to create parts of titanium alloys with complex geometry. It is also emphasized that the titanium glory Ti-6Al-4V is the most popular titanium alloy used in aircraft construction. This paper presents a description of the SLM process and a list of parameters that affect design and final material properties. Attention is drawn to the main parameters of SLM: energy density, process temperature (temperature of the building platform), environmental conditions, material properties and scanning strategy. The influence of the above parameters of the SLM process on product quality and production time is shown. Finding the optimal values for the SLM process parameters is an important step in creating a part that is manufactured to obtain priority mechanical properties. The need is stressed to employed a protective atmosphere during the process is emphasized, the use of internal gases (nitrogen, argon and helium) to prevent oxidation, significantly affects the process, the final mechanical properties and microstructure of the parts produced. It is shown that for the production of high-quality products, it is important that the metal powder has a spherical grain shape and a size not exceeding the thickness of one applied layer. The build chamber temperature should be varied depending on the desired mechanical properties of the final product. Variable process parameters (scanning strategy, laser parameters) affect the thermal balance, productivity, geometric accuracy of porosity, which affects the mechanical properties and microstructure. This analysis of foreign experience and future research will further improve the technology for the production of aircraft structural elements.


Keywords


selective laser melting; titanium alloys; additive technologies; process parameters; material properties; scanning strategy; laser parameters; environmental conditions; process temperature; production technology.

References


Gomez, Ares & Mandal, Paranjayee & Gonzalez, Diego & Zuelli, Nicola & Blackwell, Paul. (2018). Studies on Titanium Alloys for Aerospace Application. Defect and Diffusion Forum. 385. 10.4028/www.scientific.net/DDF.385.419.

Liu, Shunyu & Shin, Yung. (2018). Additive manufacturing of Ti6Al4V alloy: A re-view. Materials & Design. 164. 107552. 10.1016/j.matdes.2018.107552.

Довбыш В. М., Забеднев П. В., Зеленко М. А. Аддитивные технологии и изде-лия из металла //Библиотечка литейщика - № 8–9. 2014.

Selective Laser Melting – SLM processes with marhellabs [Електронний ресурс]. – Режим доступу: https://www.marhellabs.com/en/3d-manufacturing-processes/selective-laser-melting-slm/ – 10.10.2020 г.

Pal, Snehashis & Igor, Drstvensek & Brajlih, Tomaz. (2018). Physical Behaviors of Materials in Selective Laser Melting Process. 10.2507/daaam.scibook.2018.21.

Zhang, LaiChang & Attar, Hooyar. (2015). Selective Laser Melting of Titanium Al-loys and Titanium Matrix Composites for Biomedical Applications: A Review. Ad-vanced Engineering Materials. n/a-n/a. 10.1002/adem.201500419.

Kusuma, Chandrakanth, "The Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Pure Titanium and Ti-6Al-4V Alloy for Selective Laser Melting" (2016). Browse all Theses and Dissertations. 1510.

Барабонова И. А. и др. Селективное лазерное плавление коррозионно-стойкой стали // Современные методы и технологии создания и обработ-ки.материалов : сб. научных трудов. В 3 кн. Кн. 1. Материаловедение / редкол. А. В. Белый (гл. ред.) [и др.). Минск: ФТИ НАН Беларуси, 2017. С. 6—1.

Аддитивные технологии в производстве изделий аэрокосмической техники: учебн. пособие для вузов / А. Л. Галиновский, Е. С. Голубев, Н. В. Коберник, А. С. Филимопов; под общей редакцией А. Л. Галиновского. — М: Юрайт, 2020. — 115 с. — (Высшее образование). — Текст: непосредственный.

Попкова И. С. Селективное лазерное плавление как инновационная техноло-гия изготовления сложнопрофильных изделий / И. С. Попкова // XVI междуна-родная научно-техническая Уральская школа-семинар металловедов-молодых ученых. Екатеринбург, 7-11 декабря 2015: сборник научных трудов. — Екате-ринбург: Издательство Уральского университета, 2015. — Ч. 2. — С. 276-279.

Pedrazzini, Stella & Pek, M.E. & Ackerman, A.K. & Ghadbeigi, Hassan & Mumtaz, Kamran & Dessolier, Thibaut & Britton, T.B. & Bajaj, Priyanshu & Jägle, Eric & Gault, B. & London, A.J. & Galindo-Nava, Enrique. (2020). Influence of powder-bed temperature on the microstructure and mechanical properties of Ti-6Al-4V produced by selective laser melting.

McFadden, S., J. Quinn and Ryan Harkin. “A Review of Powder Bed Fusion for Ad-ditively Manufactured Ti-6Al-4V.” (2018).

Spears, Thomas & Gold, Scott. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Manufacturing Innovation. 5. 10.1186/s40192-016-0045-4.

Исследование влияния режимов селективного лазерного сплавленияна качество заготовок: метод. указ. / сост. А.В. Агаповичев, А.В. Сотов, В.Г. Смелов. – Самара: Изд-во Самарского университета, 2017. – 32 с.: - 10 ил.

Shipley, Harry & McDonnell, Darren & Culleton, Mark & Lupoi, R. & O'Donnell, Garret & Trimble, Daniel. (2018). Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. International Journal of Machine Tools and Manufacture. 128. 10.1016/j.ijmachtools.2018.01.003.

Hagedorn-Hansen, Devon & Bezuidenhout, Martin & Dimitrov, Dimitar & Oosthuizen, G.A.. (2017). The Effects of Selective Laser Melting Scan Strategies on Deviation of Hybrid Parts. South African Journal of Industrial Engineering. 28. 10.7166/28-3-1862.

Cheng, B., Shrestha, S. and Chou, K. 2015. Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf., 12, pp. 240–251.

References

Gomez, Ares & Mandal, Paranjayee & Gonzalez, Diego & Zuelli, Nicola & Blackwell, Paul. (2018). Studies on Titanium Alloys for Aerospace Application. De-fect and Diffusion Forum. 385. 10.4028/www.scientific.net/DDF.385.419.

Liu, Shunyu & Shin, Yung. (2018). Additive manufacturing of Ti6Al4V alloy: A review. Materials & Design. 164. 107552. 10.1016/j.matdes.2018.107552.

Dovbyish V. M., Zabednev P. V., Zelenko M. A. Additivnyie tehnologii i izdeliya iz metalla //Bibliotechka liteyschika - # 8–9. 2014.

Selective Laser Melting – SLM processes with marhellabs [Elektronniy resurs]. – Rezhim dostupu: https://www.marhellabs.com/en/3d-manufacturing-processes/selective-laser-melting-slm/ – 10.10.2020 g.

Pal, Snehashis & Igor, Drstvensek & Brajlih, Tomaz. (2018). Physical Behav-iors of Materials in Selective Laser Melting Process. 10.2507/daaam.scibook.2018.21.

Zhang, LaiChang & Attar, Hooyar. (2015). Selective Laser Melting of Titani-um Alloys and Titanium Matrix Composites for Biomedical Applications: A Review. Advanced Engineering Materials. n/a-n/a. 10.1002/adem.201500419.

Kusuma, Chandrakanth, "The Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Pure Titanium and Ti-6Al-4V Alloy for Selective Laser Melting" (2016). Browse all Theses and Dissertations. 1510.

Barabonova I. A. i dr. Selektivnoe lazernoe plavlenie korrozionno-stoykoy stali // Sovremennyie metodyi i tehnologii sozdaniya i obrabot-ki.materialov : s6. nauchnyih trudov. V 3 kn. Kn. 1. Materialovedenie / redkol. A. V. Belyiy (gl. red.) [i dr.). Minsk: FTI NAN Belarusi, 2017. S. 6—1.

Additivnyie tehnologii v proizvodstve izdeliy aerokosmicheskoy teh-niki: uchebn. posobie dlya vuzov / A. L. Galinovskiy, E. S. Golubev, N. V. Kober-nik, A. S. Filimopov; pod obschey redaktsiey A. L. Galinovskogo. — M: Yurayt, 2020. — 115 s. — (Vyisshee obrazovanie). — Tekst: neposredstvennyiy.

Popkova I. S. Selektivnoe lazernoe plavlenie kak innovatsionnaya tehnologiya izgotovleniya slozhnoprofilnyih izdeliy / I. S. Popkova // XVI mezhdunarodnaya nauchno-tehnicheskaya Uralskaya shkola-seminar metallovedov-molodyih uchenyih. Ekaterinburg, 7-11 dekabrya 2015: sbornik nauchnyih trudov. — Ekaterinburg: Izdatelstvo Uralskogo universiteta, 2015. — Ch. 2. — S. 276-279.

Pedrazzini. Stella & Pek. M.E. & Ackerman. A.K. & Ghadbeigi. Hassan & Mum-taz. Kamran & Dessolier. Thibaut & Britton. T.B. & Bajaj. Priyanshu & J?gle. Er-ic & Gault. B. & London. A.J. & Galindo-Nava. Enrique. (2020). Influence of powder-bed temperature on the microstructure and mechanical properties of Ti-6Al-4V pro-duced by selective laser melting.

McFadden, S.. J. Quinn and Ryan Harkin. “A Review of Powder Bed Fu-sion for Additively Manufactured Ti-6Al-4V.” (2018).

Spears. Thomas & Gold. Scott. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Manufacturing Innovation. 5. 10.1186/s40192-016-0045-4.

Issledovaniye vliyaniya rezhimov selektivnogo lazernogo splavleniya-na kachestvo zagotovok: metod. ukaz. / sost. A.V. Agapovichev. A.V. Sotov. V.G. Sme-lov. – Samara: Izd-vo Samarskogo universiteta. 2017. – 32 s.: - 10 il.

Shipley. Harry & McDonnell. Darren & Culleton. Mark & Lupoi. R. & O'Don-nell. Garret & Trimble. Daniel. (2018). Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Inter-national Journal of Machine Tools and Manufacture. 128. 10.1016/j.ijmachtools.2018.01.003.

Hagedorn-Hansen. Devon & Bezuidenhout. Martin & Dimitrov. Dimitar & Oost-huizen. G.A.. (2017). The Effects of Selective Laser Melting Scan Strategies on Deviation of Hybrid Parts. South African Journal of Industrial Engineering. 28. 10.7166/28-3-1862.

Cheng. B.. Shrestha. S. and Chou. K. 2015. Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit. Manuf.. 12. pp. 240–251.




DOI: https://doi.org/10.32620/oikit.2020.89.04

Refbacks

  • There are currently no refbacks.