THEORETICAL MODEL OF FORMATION OF ONE-DIMENSIONAL NANOSTRUCTURES OF COPPER OXIDE UNDER CONDITIONS OF PLASMA ENVIRONMENT

О. О. Баранов

Abstract


The work is devoted to the development of a theoretical model of the formation of 1D nanostructures of copper oxide under conditions of action on a copper sample of elevated temperatures and fluxes of charged particles. One of the promising methods for obtaining copper oxide nanowires is the use of plasma to activate the sample surface and heat it. Although the thermal growth is the most applied, plasma methods have a number of advantages, such as process rate (tens of minutes compared to several hours – for thermal methods), better process control (the ability to use ions with specified energy), low cost on electricity, environmental safety, etc. However, plasma methods have some disadvantages, like relatively small aspect ratio (the characteristic value ranges from 20 to 40, while for thermal methods – 60 to 100), as well as rapid achieving of the saturation mode in length. To synthesize a new technology that combines the advantages of both methods and eliminates their disadvantages, a developed theoretical basis is necessary, which, unfortunately, is absent today. The proposed model of formation of oxide nanostructures considers the dynamics of growth of oxide layers (Cu2O and CuO) on the surface of the copper sample, as well as the formation of nanowires on the surface of the oxide exposed to the gas phase. The model takes into account the temperature of the sample, the gas pressure in the chamber, and the energy of the plasma ions. It was found that although the diffusion rate increases significantly with increasing the sample temperature, the main factors limiting the growth process are: the rate of CuO formation and the intensity of surface sputtering due to the ion bombardment; limited supply of copper atoms to the top of the nanowire, as well as their unlimited supply to the base of the nanowire. Uneven spraying of the nanowire material along its surface is also an important factor: the ion current density on the side surface of the nanowire is much lower compared to the density on its top, because ions bombard the side surface at a very small angle. Thus, the increased energy of the ions can prevent the formation of nanowires at a significant electric potential of the sample.


Keywords


nanotechnology, plasma, nanowires, copper oxide, nanostructure growth methods.

References


Iijima, S. Helical microtubules of graphitic carbon / S. Iijima // Nature. – 1991. – №354. – P. 56 – 58.

Nanoscale memory devices / A. Chung, J. Deen, J. S. Lee, M. Meyyappan // Nanotechnology. – 2010. – №21. – P. 412001.

Ostrikov, K. Plasma nanoscience: setting directions, tackling grand challenges / K. Ostrikov, U. Cvelbar, A. B. Murphy // Journal of Physics D: Applied Physics. – 2011. – №44. – P. 174001.

Meyyappan, M. Inorganic nanowires: applications, properties, and characterization / M. Meyyappan, M. K. Sunkara. – New York: CRC Press. – 2010. – 454 p.

Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors / A. Pendashteh, S. E. Moosavifard, M. S. Rahmanifar, Y. Wang, M. F. El-Kady, R. B. Kaner, M. F. Mousavi // Chemistry of Materials. – 2015. – №27. – P. 3919 – 3926.

Zou, C. W. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures / C. W. Zou, W. Gao // Transactions on Electrical and Electronic Materials. – 2010. – №11. – P. 1 – 10.

Fe3Se4 nanostructures with giant coercivity synthesized by solution chemistry / H. Zhang, G. Long, D. Li, R. Sabirianov, H. Zeng // Chemistry of Materials. – 2011. – №23. – P. 3769 – 3774.

Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductors. / G. L. Hwang, K. C. Hwang, Y.-T. Shieh, S.-J. Lin // Chemistry of Materials. – 2003. – №15. – P. 1353 – 1357.

Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors / L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, T. Yu // Nanotechnology. – 2010. – №20. – P. 085203.

Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays / Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang // Progress in Materials Science. – 2014. – №60. – P. 208 – 337.

Conductometric chemical sensor based on individual CuO nanowires / D. Li, J. Hu, R. Wu, J. G. Lu // Nanotechnology. – 2010. – №21. – P. 485502.

Nanowires for inhibiting secondary electron emission / L. Aguilera, I. Montero, M. E. Davila, A. Ruiz, L. Galan, V. Nistor, D. Raboso, J. Palomares, F. Soria // Journal of Physics D: Applied Physics. – 2013. – №46. – P. 165104.

Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells / S. Brittman, Y. Yoo, N. P. Dasgupta, Si-in Kim, B. Kim, P. Yang // Nano Letters. – 2014. – №14. – P. 4665 – 4670.

CuO nanowire growth on Cu2O by in situ thermal oxidation in air / A. Li, H. Song, W. Wan, J. Zhou, X. Chen // Electrochimica Acta. – 2014. – №132. – P. 42 – 48.

Filipič, G. Copper oxide nanowires: a review of growth / G. Filipič, U. Cvelbar // Nanotechnology. – 2012. – №23. – P. 194001.

A novel method for metal oxide nanowire synthesis / S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J. Sainio, E. D. Obraztsova, S. N. Bokova, A. N. Obraztsov, E. I. Kauppinen // Nanotechnology. – 2009. – №20. – P. 165603.

Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery / H. Park, S. Lee, M. Jo, S. Park, K. Kwon, M. K. Shobana, H. Choe // Journal of the Korean Ceramic Society. – 2017. – №54. – P. 438 – 442.

Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing / Q. Cheng, W. Yan, L. Randeniya, F. Zhang, K. Ostrikov // Journal of Applied Physics. – 2014. – №115. – P. 124310.

Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis / O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko // Applied Physics Reviews. – 2017. – №4. – P. 041302.

Ostrikov, K. Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids / K. Ostrikov, E. C. Neyts, M. Meyyappan // Advances in Physics. – 2013. – №62. – P. 113 – 224.

Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow / A. Altaweel, G. Filipič, T. Gries, T. Belmonte // Journal of Crystal Growth. – 2014. – №407. – P. 17 – 24.

CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications / Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang // Progress in Materials Science. – 2014. – №60. – P. 208 – 337.

Gulbransen, E. A. Oxidation of copper between 250 C and 400 C and the growth of CuO “whiskers” / E. A. Gulbransen, T. P. Copan, K. F. Andrew // Journal of the Electrochemical Society. – 1961. – №108. – P. 119 – 123.

Short-circuit diffusion growth of long bi-crystal CuO nanowires / B. J. Hansen, H.-l. Chan, J. Lu, G. Lu, J. Chen // Chemical Physics Letters. – 2011. – №504. – P. 41 – 45.

Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique / C. M. Tang, Y. B. Wang, R. H. Yao, H. L. Ning, W. Q. Qiu, Z. W. Liu // Nanotechnology. – 2016. – №27. – P. 395605.

On the growth and electrical characterization of CuO nanowires by thermal oxidation / A. M. B. Gonçalves, L. C. Campos, A. S. Ferlauto, R. G. Lacerda // Journal of Applied Physics. – 2009. – №106. – P. 034303.

Baranov, O. Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size / O. Baranov, G. Filipič, U. Cvelbar // Plasma Sources Science and Technology. – 2019. – №28. – P. 084002.

Growth dynamics of copper oxide nanowires in plasma at low pressures / G. Filipic, O. Baranov, M. Mozetic, U. Cvelbar // Journal of Applied Physics. – 2015. – №117. – P. 043304.

On the growth and electrical characterization of CuO nanowires by thermal oxidation / K. Bazaka, O. Baranov, U. Cvelbar, B. Podgornik, Y. Wang, S. Huang, L. Xu, J. W. M. Lim, I. Levchenko, S. Xu // Nanoscale. – 2018. – №10. – P. 17494 – 17511.

Kittel, C. Thermal physics / C. Kittel, H. Kroemer. – New York: W. H. Freeman and Co. – 1980. – 475 p.

Levchenko, I. Graphene flakes in arc plasma: conditions for the fast single-layer growth / I. Levchenko, U. Cvelbar, M. Keidar // Graphene. – 2016. – №5. – P. 81 – 89.

Cvelbar, U. Characterization of oxygen plasma with a fiber optic catalytic probe and determination of recombination coefficients / U. Cvelbar, M. Mozetič, A. Ricard // IEEE Transactions on Plasma Science. – 2005. – №33. – P. 834 – 837.

Density functional theory study of the adsorption and dissociation of O2 on CuO(111) surface / S. Sun, Ch. Li, D. Zhang, Y. Wang // Applied Surface Science. – 2015. – №333. – P. 229 – 234.

Adsorption and dissociation of O2 on the Cu2O (111) surface: thermochemistry, reaction barrier / R. Zhang, H. Liu, H. Zheng, L. Ling, Z. Li, B. Wang // Applied Surface Science. – 2011. – №257. – P. 4787 – 4794.

Atkinson, A. Transport processes during the growth of oxide films at elevated temperature / A. Atkinson // Reviews of Modern Physics. – 1985. – №57. – P. 637 – 470.




DOI: https://doi.org/10.32620/oikit.2020.88.11

Refbacks

  • There are currently no refbacks.