CENTER-OF-GRAVITY VARIATION INFLUENCE ON FLIGHT RANGE OF TRANSPORT CATEGORY AIRPLANE

R. Tsukanov, V. Ryabkov, O. Los

Abstract


The method of transport category airplane flight range estimation taking into account its center-of-gravity position variation in the process of fuel utilization at cruising flight mode is presented. The method structure includes the following models:

– Interinfluence of main parameters on each other in the process of fuel utilization;

– CG position influence on required thrust values in level flight;

– Estimation of CG position influence on lift-to-drag ratio in cruise mode;

– Quantitative estimation of center-of-gravity position variation influence on airplane flight range.

Simulation of the main parameters is based on authoring researches, which established interinfluence among geometrical and aerodynamic parameters of wing, parameters of horizontal tail and center-of-gravity position variation caused by fuel utilization in cruise flight. Such model allows estimating of airplane center-of-gravity influence their values and their relative position.

Aerodynamic parameters variation caused by center-of-gravity shift resulted in necessity to take this influence into account, for required engine thrust variation; that is shown in the publication in the form of dependences P(M, m, xCG) allowing to take into account the required thrust variation and their influence to range variation.

On the base of interinfluence model and taking into account required thrust variation (when center-of-gravity position shifts), lift-to-drag variation has been obtained and analyzed in the form of dependences K, KM(M, m, xCG) for middle airplane of transport category.

Expression for estimation of airplane flight range under variable values of its mass and center-of-gravity position is obtained on the base of these models; that allows flight range increasing by means of center-of-gravity position dedicated shift.

On the example of mid-range transport airplane, it is shown, that at Mach number M = 0.7 and center-of-gravity shift back from xCG = 0.20 to xCG = 0.35, the increase of lift-to-drag ratio makes ΔK = 0.43.

On the base of presented models, it is shown, that airplane center-of-gravity position influences lift-to-drag ratio, fuel efficiency and as a result on flight range at cruising flight mode.

Application of aft center-of-gravity position allows decreasing of engine required thrust (decreasing fuel consumption), and increasing of lift-to-drag ratio and airplane flight range.


Keywords


airplane center-of-gravity, fuel trim transfer, engine required thrust, lift-to-drag ratio, flight range.

Full Text:

PDF

References


Electronic Code of Federal Regulations. Part 25 — Airworthiness Standards: Transport Category Airplanes [Electronic Code]. — URb: http://www.ecfr.gov/cgi-bin/. — 27.04.2015.

Electronic Code of Federal Regulations. Part 33 — Airworthiness Standards: Aircraft Engines [Electronic Code]. — URb: http://www.ecfr.gov/cgi-bin/. — 27.04.2015.

Koncepcija sozdanija sovremennyh reaktivnyh regional'nyz passazhir-skih sa-moljotov. Monografija P. V. Balabuev, V. A. Boguslaev, A. D. Donec i dr. — Har'kov : Nac. ajerokosm. univ. im. N. E. Zhukovskogo «Har'k. aviac. int.» Publ., 2020. 271 p. (In Russian).

Tsukanov, R. U. Mathematical Simulation of Fuel Burn Schedule Effect on Airplane Center-of-Gravity Position. R. U. Tsukanov. Aviacionno-kosmicheskaja tehnika i tehnologija: sb. nauch. tr. Nac. ajerokosm. univ. im. N. E. Zhukovskogo «Har'k. aviac. int.» Publ., Vyp. 1/128. Har'kov, 2016. pp. 18-29.

Tsukanov, R. U. Transport Category Airplane Center-Of-Gravity Shift Mathematical Simulation Accounting Fuel Trim Transfer. R. U. Tsukanov. Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov: sb. nauch. tr. Nac. ajerokosm. univ. im. N. E. Zhukovskogo «Har'k. aviac. int.». Publ., Vyp. 3 (87). — Har'kov, 2016. pp. 41 53.

Tsukanov, R. U. Selection of Optimal Center-of-Gravity of Transport Category Air-plane from Minimum Required Thrust Condition. R. U. Tsukanov. Otkrytye infor-macionnye i komp'juternye integrirovannye tehnologii : sb. nauch. tr. Nac. ajero-kosm. univ. im. N. E. Zhukovskogo «Har'k. aviac. int.». Vyp. 76. — Har'kov, 2017. pp. 23 30.

Behtir, P. T. Prakticheskaja ajerodinamika samoljota Il 76T. P. T. Behtir, V. P. Behtir. Moskva, Mashinostroenie, 1979. 155 p. (In Russian).

Behtir, V. P. Prakticheskaja ajerodinamika samoljota An 124 100. V. P. Behtir, V. M. Rzhevskij, E. N. Kovrizhnyh, V. H. Kopysov. — Ul'janovsk. : UVAU GA, 2005. 207 p. (In Russian).

Jugov, O. K. Soglasovanija harakteristik samoljota i dvigatelja. O. K. Jugov, O. D. Se-livanov. Moskva, Mashinostroenie, 1975. 204 p.; 2-e izd., 1980. 200 p. (In Russian).

Los', A. V. An 188 Srednij voenno-transportnyj samoljot ukorochennogo vzljota i po-sadki. Kiev, Oficial'noe izdanie DP «Antonov», 2018. — 118 p.

400 Freighter Main deck cargo arrangements. — Boeing, 2010. — 10 p. [Elec-tronic resource]. — Access mode: http://www.boeing.com.

Eger, S. M. Proektirovanie samoljotov S. M. Eger, V. F. Mishin, N. K. Lisejcev, A. A. Badjagin, V. E. Rotin, F. I. Skljanskij, N. A. Kondrashov, V. A. Kiseljov, N. A. Fomin. Moskva. Mashinostroenie, 1983. — 616 p.




DOI: https://doi.org/10.32620/oikit.2020.88.01

Refbacks

  • There are currently no refbacks.