SYSTEMATIZATION AND SYNTHESIS OF THEORETICAL AND EXPERIMENTAL DATA ON EFFECTIVENESS OF CASING TREATMENTS IN AXIAL COMPRESSOR

И. И. Редин, М. А. Шевченко

Abstract


The systematization of physical flow models at the peripheral region of the rotors of axial compressor is carried out. Based on the experimental and numerical studies, the flow features in subsonic and transonic rotors are analyzed. Similar features of the flow near the wall at the periphery of subsonic and transonic rotors are formulated. The characteristic areas and individual features of the near-wall flow in them, which are obtained in experimental studies of the flow structure at the periphery of the blade rows, are reflected. The analysis of the influence of annular grooves in the axial compressor case on the flow in the airfoil channel of the subsonic and transonic rotors is presented. The hypothetical mechanism of the flow effect in the cavity of the annular groove on the main flow at the tip region of the airfoil channel of axial compressor rotor is described. An approach to generalize the experimental data of the axial compressor stages with the casing treatment based on the selected fundamental system of dimensionless parameters characterizing the main features of the flow at the rotor tip region are proposed. Using the approach, the dependences of the casing treatment effect on the gas-dynamic stability limit and efficiency are obtained. It was found, when Reynolds numbers ReΔr> 400 increase, the efficiency of annular groove casing treatment in the axial compressor wall on the gas-dynamic stability limit of the compressor decreases. The existence of the region of aerodynamic efficiency modes of the annular groove casing treatment in the case is shown. In this area, there is an optimal mode when the maximum effect of efficiency from install annular groove casing treatment is achieved. The obtained generalization al-lows us, at the step of making design decisions, to evaluate the effectiveness of the annular groove casing treatment in the case when it is used in subsonic and transonic rotors of the axial compressor stages.


Keywords


annular groove casing treatment, radial clearance flow, gas – dynamic stability, axial compressor

References


Lakshiminarayana, B., Pouagare, M., Davino, R. Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage. ASME Journal of Engineering for Power, 1982, vol. 104(4), pp. 760-781.

Pandya, A., Lakshminarayana, B. Investigation of the Tip Clearance Flow Inside and at the Exit of a Compressor Rotor Passage /ASME Journal of Engi-neering for Power, 1983, vol. 105(1), pp. 1-17.

T.О. Houghton. Casing Treatment for Axial Flow Compressors. PhD thesis, University of Cambridge, Cambridge, UK, 2010.

Osborn, W.M, Lewis, G.W and Heidelberg, L.J. Effect of several porous casing treatments on stall limit and overall performance of an axial compressor rotor. NASA Report, 1971, no. TN 6537, 48 p.

F04D27/02. Sposoby i ustroistva dlya ustraneniya pompazha [Anti-stall tip treatment means] / Gelmedov, F.S, Lokshtanov, E.A, Olstain, L.E.M and Sigorkin, M.A – RF 2034175; zayavl. 1993-03-11; opubl. 30.04.1995.

P. A. Seitz. Casing Treatment for Axial Flow Compressors. PhD thesis, University of Cambridge, Cambridge, UK, 1999.

Noureddine, D., Huu, Duc Vo. Parametric study for lossless casing treatment on a mixed-flow compressor rotor. Paper in Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montréal, Canada, 2015, vol. 2A: Turbomachinary, no. GT2015-42750, pp. 25-37.

Prince, D.C, Wisler, D.C and Hilvers, D.E. Study of casing treatment stall margin improvement phenomena. NASA Report, 1974, no. CR-134552, 166 р.

Wilke, I. and Kau, H-P. A numerical investigation of the flow mecha-nisms in a high-pressure compressor front stage with axial slots. ASME J. Tur-bomachinery, 2004, vol. 126(2), pp. 339-349.

Nezym, V. Investigation of design features of compressor casing treat-ment. The archive of mechanical engineering, 2014, vol. 61, no. 13, pp. 153 – 161.

Mileshin, V., Brailko, I. and Startsev, A. Application of Casing Circum-ferential Grooves to Counteract the Influence of Tip Clearance. ASME Paper, 2008, no. GT2008-51147, pp. 617-627.

Anurov, Y. M., Koval, V. A., Mikhailov, V. E. Osobennosti primeneniya nadrotornykh kol'tsevykh ustroistv v osevykh kompressornykh stupe [Forecasting stall modes of axial compressors gte taking into account features of formation of pro-file and end boudary layers]. Gazoturbinnye tekhnologii, 2016, no. 5, pp. 42 – 45.

Muller, W. M., Christoph, B., Schiffer, H.-P. and Hah, C. Interaction of Rotor and Casing Treatment Flow in an Axial Single-stage Transonic Compressor with Circumferential Grooves. ASME Paper, 2008, no. GT2008-50135, pp. 67-78.

Shabbir, A., Adamczyk, J. J. Flow Mechanism for Stall Margin Im-provement due to Circumferential Casing Grooves on Axial Compressors. ASME Journal of Turbomachinery, 2005, vol. 127(3), pp. 708-717.

Fujita, H., Takata, H. A. Study on Configurations of Casing Treatment for Axial Flow Compressors. JSME Bulletin, 1984, vol. 27(230), pp. 1675-1681.

Houghton, T., Day, J. Enhancing the Stability of Subsonic Compressors Using Casing Grooves. ASME Journal of Turbomachinery, 2009, no. GT2009-59210, pp. 39-48.

Houghton, T., Day, J. Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity. ASME Journal of Tur-bomachinery, 2011, 134, 021003.

Sakuma, Y., Watanabe, T., Himeno, T., Kato, D., Murooka, T., Shuto, Y. Numerical Analysis of Flow in a Transonic Compressor with a Single Cir-cumferential Casing Groove: Influence of Groove Location and Depth of Flow Insta-bility. J. Turbomach, 2013, no 136, 031017.

Mao, X., Liu, B., Zhao, H. Numerical Investigation for the Impact of Sin-gle Groove on the Stall Margin Improvement and the Unsteadiness of Tip Leakage Flow in a Counter-Rotating Axial Flow Compressor. Energies, 2017, no. 10, 1153.

Redin, I. I., Shevchenko, M. A. Uluchshenie toplivnoi effektivnosti gazoturbinnogo dvigatelya ustanovkoi v kompressore nadrotornogo ustroistva [Im-proving the Fuel Efficiency of a Gas Turbine Engine by Installing in the Compressor a Casing Treatment]. Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii, 2018, no.81, pp. 72–85. doi: 10.32620/oikit.2018.81.08

Zagorui, V.A., Redin, I.I. Vliyanie kol'tsevykh kanavok v korpuse kom-pressora na ego kharakteristiki i gazodinamicheskuyu ustoichivost' [Effect of annular grooves in the compressor casing on its characteristics and gas-dynamic stability]. Gazovaya dinamika dvigatelei i ikh elementov, 1987, pp. 10 – 15.

Matthias, R., Martin, L., Konrad, V. Experimental Investigation of Cir-cumferential Groove Casing Treatments for Large Tip Clearances in a Low Speed Axial Research Compressor. Paper in Proceedings of ASME Turbo Expo 2015: Tur-bine Technical Conference and Exposition, Montréal, Canada, 2015, vol. 2A: Tur-bomachinary, no. GT2015-42646.

Haixin, C., Song, F., and Xudong, H. CFD Investigation on Tip Leakage Flow and Casing Treatment of a Transonic Compressor. ISABE, 2005, no. 2005-1098.

Lepot, I., Geuzaine, P., Hiernaux, S. Casing Treatment Simulations with The Elsa Software. Proceedings of European Turbomachinery Conference, 2007.

Zhang, H., and Ma, H. Study of Sloped Trench Casing Treatment on Performance and Stability of a Transonic Axial Compressor. Proceedings of ASME Turbo Expo, 2007, no GT-2007-28140.

Huang, X., Chen, H., Fu, S. CFD Investigation on the Circumferential Grooves Casing Treatment of Transonic Compressor. Proceedings of ASME Turbo Expo, 2008, no. GT-2008-51107.

Choi, K., Kim, J., and Kim, K. Design Optimization of Circumferential Casing Grooves for a Transonic Axial Compressor to Enhance Stall Margin. Pro-ceedings of ASME Turbo Expo, 2010, no. GT-2010-22396.

Mueller, M. W., Hah, H.-P. S. C. Effect of Circumferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor. Pro-ceedings of ASME Turbo Expo, 2007, no GT-2007-27365.

Chen, H., Huang, X., Shi, K., Fu, S., Bennington, M., Morris, S., Ross, M., McNulty, S., and Wadia, A. A CFD Study of Circumferential Groove Casing Treatments in a Transonic Axial Compressor. Proceedings of ASME Turbo Expo, 2010 no. GT-2010-23606.

Heinichen, F., G¨ummer, V., Schiffer, H.-P. Numerical Investigation of a Single Circumferential Groove Casing Treatment on Three Different Compressor Ro-tors. Proceedings of ASME Turbo Expo, 2011, no. GT2011-45905.

Yasunori, S., Toshinori, W., Takehiro, H., Dai, K., Takeshi, M., Yu-kari, S. Numerical Analysis of Flow in a Transonic Compressor with a Single Circum-ferential Casing Groove: Application to Two Different Compressor Rotors. Proceed-ings of ASME Turbo Expo, 2011, no. GT2014-26691.

Redin. I.I. Vliyanie shchelevogo ustroistva na kharakteristiki i diapazon ustoichivykh rezhimov raboty rabochego kolesa stupeni osevogo kompressora [The Effect of Slit Device to the Characteristics and Range of Operation Stable Modes of Stage Axial Compressor]. Gazovaya dinamika dvigatelei i ikh elementov, 1979, vol. 1, pp. 65 – 70.

Motoyuki, K., Aldo, R. Effect of a Recirculating Type Casing Treatment on a Highly Loaded Axial Compressor Rotor. Int. J. Turbomach. Propuls. Power, 2019, vol. 4(1), no. 5. Available at: https://www.mdpi.com/2504-186X/4/1/5 (Ac-cessed 1 April 2020). doi:10.3390/ijtpp4010005.

Wadia, A.R., James, F.D. F110-GE-132: Enhanced Power Through Low-Risk Derivative Technology. J. Turbomach, 2000, no. 123, pp. 544–551.

Reid, L., Moore, D. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Com-pressor; No. NASA/TP-1337; NASA: Washington, DC, USA, 1978.

Dunham, J. CFD Validation for Propulsion System Components; No. AGRAD-AR-355; The Advisory Group for Aerospace Research and Development (NATO): Neuilly sur Seine, France, 1998.

Redin, I.I., Shevchenko, M.A. Diagnostika predpompazhnogo sos-toyaniya osevogo kompressora s nadrotornym ustroistvom [Diagnostics of Pre-Surge Condition of the Axial Compressor with the Annular Grooves Casing Treatment]. Avi-atsionno-kosmicheskaya tekhnika i tekhnologiya, 2018, no. 8 (152), pp. 97-107.

Ugryumov, M. L., Men'shikov, V. A. Raschet prostranstvennogo pogra-nichnogo sloya v mezhlopatochnykh kanalakh reshetok osevykh turbomashin [Calculation of Three-Dimensional Boundary Layer in The Airfoil Channels Cascade Axial Turbomachinery]. Aviatsionnaya tekhnika, 1989, no 4, pp. 18 – 21

Loitsyanskii, L.G. Metody podobiya i razmernosti v mekhanike zhidkosti i gaza [Similarity and Dimensional Methods in Fluid and Gas Mechanics]. Sbornik nauchno-metodicheskikh statei o teoreticheskoi mekhanike, 1981, no.11, pp. 22 –31.

Ershov, V. N. Primenenie nadrotornykh ustroistv v korpuse kompresso-ra pri uvelichennykh radial'nykh zazorakh [Application of Casing Treatment in the Compressor Case with Increased Tip Clearances]. Samoletostroenie. Tekhnika vozdushnogo flota, 1983, no. 50. pp. 42.

Zvereva, G. N., Savin, N. M. Effektivnost' primeneniya kol'tsevykh pro-tochek v korpuse rabochego kolesa stupeni osevogo kompressora [Efficiency of Us-ing Annular Grooves in the Case of Rotor of an Axial Compressor Stage]. Gazovaya dinamika dvigatelei i ikh elementov: sb. nauch. tr. Khar'kov. aviats. in – ta, 1984, no. 2., pp. 65 – 70.

Takata, T. Mekhanizm i effektivnost' zapasa po sryvu s pomoshch'yu perforirovaniya poverkhnosti korpusa [The Mechanism and Efficacy Stall Margin by Perforating Case Surface]. Tr. amer. o – va inzhenerov-mekhanikov. Ser. Energet-icheskie mashiny i ustanovki, 1977, no. 1, pp. 134 – 147.




DOI: https://doi.org/10.32620/oikit.2020.87.11

Refbacks

  • There are currently no refbacks.