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The object of the study is a computer model of an automatic control system for a quadcopter.
The subject matter of the research encompasses the application of formal methods for analyzing
and verifying requirements for quadcopter control systems, with a particular focus on the
capabilities of the Simulink Design Verifier™ tool. The primary goal of the study is to enhance
the overall reliability of the quadcopter model by applying formal analysis techniques at the
design stage to uncover potential logical and structural errors before physical implementation.
The tasks to be solved: conducting a comprehensive review of challenges associated with the
operation of commercial quadcopter platforms; formulating safety-oriented requirements for
guadcopter flight control; developing a detailed simulation model of the control system using the
Simulink® environment; utilizing the Property Proving functionality to perform formal verification
of critical system properties; analyzing and interpreting the verification reports generated by the
tool; and identifying latent design flaws or inconsistencies that may compromise system safety.
The study employed the following methods: formal verification using the Property Proving tool,
simulation-based modeling, static code analysis, and model-based testing. As a result of the
research, it was demonstrated how formal verification techniques, such as Property Proving,
can be applied to validate safety-critical behaviors of quadcopter control systems. The use of
Simulink Design Verifier™ proved effective in identifying design weaknesses early in the
development cycle, reducing downstream risk and rework. Additionally, the generation of
interactive diagnostic reports facilitated the visualization of failure scenarios and supported
iterative debugging. Conclusions. The application of formal analysis tools such as Simulink
Design Verifier™ represents a valuable approach to strengthening quadcopter control system
reliability, if models are properly constructed and properties are carefully defined. Although
limitations exist — particularly concerning compatibility with certain Simulink® blocks — the tool
remains a powerful complement to traditional testing, especially when addressing high-
assurance system requirements. The study underscores the necessity of integrating formal
methods into standard verification workflows to balance theoretical rigor with practical validation.
Keywords: UAV; quadcopter; control system; design; static analysis; property proving;
computer model.

Introduction

Currently, the development of UAV control systems has significantly increased
in value and importance. Quadcopters are now considered expensive expendable
assets. Some individuals build their own models, while others upgrade existing popular
products, as publicly available quadcopters are vulnerable to external disturbances
(electronic warfare, firearms, and signal jammers, anti-drone actions, etc.) [1].

In the event of external interference with control, original models often cannot
resist such disruptions and become uncontrollable. By assessing flight tasks, external
factors, and the UAV’s performance limits, relevant upgrade objectives are formulated,
such as developing custom firmware or providing an alternative control channel.

At present, the main methods of minimizing decision-making risks using
guadcopters include relying on predefined control rules, expert prior knowledge, and
regularization constraints. However, these methodologies require quadcopters to meet
strict preliminary conditions, such as acquiring extensive decision-making experience
and establishing comprehensive rules.
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Adhering to industrial standards and design protocols for quadcopters is often
impractical due to significant limitations in both material and time resources.
Nevertheless, abandoning preliminary design and a series of computer experiments is
also unreasonable. Non-compliance with formal requirements often leads to frequent
quadcopter crashes under uncertain conditions and subsequent mission failures.
Thorough development of the computer model and the use of appropriate tools for its
formal analysis are key to creating a more reliable physical prototype of quadcopter.

Upgrade — or especially development of a new quadcopter — is based on a list
of current issues that hinder the operation of original models. For example, the paper
[2] considers the implementation of a quadcopter automatic flight control system into
an existing training model. As the authors note, the results confirm that such
implementations can meet performance requirements under realistic conditions,
underscoring the importance of software-level optimization and correctness.

Due to limited resources, developers conduct series of (iterative) tests and trials
before a prototype can be finalized: verifying the operation of an algorithm in isolation
from the full control system, evaluating the performance of an alternative control
channel in combination with the main one. In any case, testing is a mandatory and
inevitable stage in product development: the more diverse the tests, the more reliable
the result will be.

In [3], the authors present a method for autonomous decision-making for UAVs
based on safe reinforcement learning. The key idea lies in the adaptive selection of
control strategies depending on the level of risk faced by the UAV in various flight
situations. The proposed approach enables the system to dynamically switch between
safety policies, thereby increasing resilience to environmental uncertainties and
external disturbances. However, this work does not address the formal verification of
system behavior correctness during transitions between strategies. There is no
guarantee that, under any combination of risk factors, the UAV will always make a
decision that ensures a safe outcome. This leaves the question of provable safety of
such systems open, especially in the context of safety-critical scenarios.

In many cases, UAV control systems are designed heuristically or based on rigid
logic, without formal proof of the correctness of transitions. The absence of formal
guarantees that the system will always and correctly switch to a safe mode under all
possible scenarios remains a significant issue.

As an example of a complex and testing-intensive control system, study [4] can
be cited. It addresses the task of determining the safe flight envelope for UAVs based
on the analysis of a variety of potential external destabilizing factors. The main
contribution of the work lies in the development of a theoretical model that enables
guantitative assessment of such factors’ impact on flight stability and controllability.
The authors emphasize that due to limitations in the experimental base and the lack of
necessary conditions for field tests, they were forced to rely solely on mathematical
modeling and simulation of flight scenarios. However, the question remains open as to
how accurately the obtained results reflect the behavior of a real UAV under multi-
component disturbances and environmental uncertainties. The simulation of isolated
scenarios, in essence, covers only a narrow range of possible situations, leaving
potentially critical combinations of external influences beyond the scope of analysis.
Thus, despite the usefulness of the approach, the lack of guaranteed completeness in
scenario coverage limits the applicability of the results for tasks requiring formal safety
assurance, especially in systems with automatic return or mode-switching
mechanisms. This underscores the need for formal verification methods capable of
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proving correct system behavior under all possible conditions, not just those manually
tested.

Study [5] presents the results of full-scale (field) experiments with UAVs, which
undoubtedly adds practical value to the research. The authors demonstrate that even
with limited modeling accuracy or assumptions in flight conditions, it is possible to
obtain useful data on the actual system behavior. Moreover, field tests are particularly
valuable in identifying hidden design flaws that are difficult to detect through numerical
simulation. Nevertheless, despite its practical importance, this approach can be
considered sufficient and complete only if the UAV control system has been tested
across the entire range of operating conditions, including edge cases and emergency
scenarios. Otherwise, the risk of incorrect system behavior in unforeseen situations
remains, especially during automatic execution of critical decisions.

In papers [6, 7], the authors demonstrate that when model simplifications or
limitations on the complexity of described conditions are allowed during the system
design stage, the use of fuzzy logic becomes a justified and effective solution. Based
on a dataset reflecting both the internal state of the UAV and the external
environmental conditions, a fuzzy controller can form an intuitively understandable and
adaptive control strategy.

Fuzzy logic has proven to be a powerful tool for designing decision-making logic,
especially in systems where it is impossible to formulate precise mathematical models
or transition rules between modes. It shows good compatibility with soft, context-
dependent requirements that are often imposed on autonomous UAV control systems.
However, fuzzy logic cannot provide guarantees that, under all possible scenarios, the
system will necessarily and correctly switch to the appropriate mode.

In cases where field experiments do not require complex preparation and the
tests themselves are conducted quickly and relatively easily; an iterative design
approach is especially effective. Its essence lies in accumulating a large body of
experimental data for subsequent use in calibrating and validating mathematical
models. This approach allows for model refinement as experience is gained and
improves its reliability based on observed data.

For example, in study [8], the validation of lithium-polymer batteries for UAVs is
carried out using an algorithm that analyzes results under repeatable conditions.
Thanks to the possibility of isolating the battery from the rest of the system, the battery
itself becomes the object of testing, simplifying data collection and analysis. The
authors developed a results processing algorithm that accounts for experiment
repeatability and provided extensive tables with the real-world results.

The proposed approach demonstrates high effectiveness when working with
local subsystems, such as power modules, where direct verification of characteristics
is possible. In such an iterative method, it is important to accumulate the maximum
amount of data under as many diverse experimental conditions as possible. Only in
this way can the correctness of the system be at least partially ensured in the absence
of formal verification.

1. Objectives and Approach

Regular tests cover only a minimal range of potential scenarios, whereas the
broader the coverage, the higher the probability of detecting a development error. In
addition to testing, which provides specific information about the state of the model, it
is recommended to perform static analysis using specialized tools. This approach
allows for the identification of requirement violations and other issues that may affect
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the quality of the control system — essentially by iterating through all possible
combinations of input data and comparing them with the system’s behavior.

However, even static analysis has its limits when dealing with highly nonlinear
or state-dependent systems such as UAV controllers. This is where formal verification
techniques, such as Property Proving, offer a significant advantage.

These methods do not rely on scenario sampling or manual test design but
instead attempt to mathematically prove whether a given property holds under all
possible conditions. This is particularly crucial in avionics, where any design error can
result in mission failure or safety violations.

Figure 1 illustrates the areas of system functionality coverage using simulation-
based testing, comprehensive analysis, and feasibility analysis.

Simulation-based testing Almighty analysis Feasible analysis
Fig. 1. Areas of analysis of the functioning of the control system

Fortunately, most technologies and tools for solving the described problem have
either built-in functionality or are compatible with other software products that support
industry standards. And then the developer’s task at this stage will be to correctly
represent the computer model, appropriately formulate the requirements and
qualitatively analyze the results.

This paper focuses on formally verifying the return functionality as a critical
safety scenario. However, the method is not limited to this single behavior; it is
extensible to other failure modes, including loss of communication, battery discharge,
sensor faults etc. So that, such flexibility allows comprehensive coverage of safety
requirements and supports the development of more resilient UAV control systems.

The goal is not only to confirm the correctness of a given property but also to
show how formal tools can be applied iteratively as new safety functions are
introduced.

2. Materials and methods of research

In the field of control system development, the primary technology is Simulink®
[9]. Therefore, this work focuses on the Simulink Design Verifier™ application,
specifically its formal analysis tool, Property Proving, which supports industry
standards [10].

The model for automatic control system of a quadcopter is represented in Figure
2 [11]. The top-level model served as a structural container, with its behavior
implemented via subsystems, each responsible for distinct components.
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Fig. 2. Computer model of the original quadcopter control system

The quadcopter’s motion is controlled by changing the motor rotation speed. To
describe the quadcopter’'s motion dynamics, two coordinate systems were introduced:
the normal terrestrial coordinate system and the principle (moving) coordinate system
linked to the quadcopter's center of mass. The quadcopter’'s angular position is
specified by Euler angles based on angular velocity information. A feature of
quadcopter control is the generation of control signals for all six degrees of freedom
using four motors that generate lift. In this regard, it is advisable to consider the
quadcopter’s position in space not by Euler angles, but by coordinates relative to the
normal terrestrial coordinate system.

The original model describes complex movement across three control channels.
The input to the model consists of desired displacement values along three axes
(X_ctrl, Y _ctrl, Z ctrl), which are then used to calculate Euler angles, angular
velocities, and torques. The output signals represent the actual position of the
guadcopter along the three axes (X_actual, Y_actual, Z_actual).

As part of the study, the following requirement is imposed on the original control
system: if the quadcopter moves beyond the boundary distance from the pilot (1000
m), the control system must automatically switch to an autonomous mode and return
to the pilot.

Figure 3 shows the computer model of the upgraded control system. The subject
of the analysis is an automatic control subsystem of the quadcopter that implements
the “Return-to-Home” behavior when a defined distance threshold is exceeded. This
subsystem was modeled in Simulink® using a combination of chart-based logic and
signal processing blocks. In the Figure 3 X_rth, Y_rth, Z_rth are expected coordinates
from the “Return-to-Home” operation.

Figure 4 shows the “Return-to-Home” function of the upgraded quadcopter
automatic control system.
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Fig. 3. Computer model of the upgraded quadcopter control system

function[x rth,y rth,z rth,r,returning]=R T H(X,y,z)
pos = [x; y; z]:
r = norm(pos);
threshold = 1000;
T return = 100;
persistent t now
if isempty(t now), t now = 0; end
if r > threshold
returning = true;
t now = t now + 1;

scale = max(0, 1 - £ now / T return);
x rth = pos(1l) * scale;
y _rth = pos(2) * scale;
z_rth = pos(3) * scale;
else

returning = false;
X rth = x;
y rth = y;
z rth = z;
end
end

Fig. 4. “Return-to-Home” function of the upgraded quadcopter control system
The function is applied to the model operating in three-dimensional space. It

monitors the spatial coordinates of the quadcopter and determines whether it has
exceeded a predefined operational boundary.
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Specifically, the function receives the current position vector and calculates the
Euclidean distance from the origin, which is assumed to represent the “home”. If this
distance exceeds a defined threshold (1000 m), the function activates a return
mechanism.

A persistent counter keeps track of how many steps the quadcopter has been
outside the safe boundary. During each step, the position vector is scaled down
linearly, moving the quadcopter progressively closer to the origin. As a result, the
quadcopter is smoothly guided back within the acceptable operational range, rather
than abruptly repositioned. Thus, this mechanism simulates a practical safety protocol
for autonomous systems, ensuring controlled return behavior when the system moves
beyond acceptable limits, thereby enhancing robustness and mission reliability.

The simulation results of the model with the original “Return-to-Home” function
are shown in Figure 5.

As can be seen the return home trigger is indeed set to “1”, however, as soon
as the distance is reduced to less than 1000 m, it resets to “0”.

Over the interval [290 360] sec the function works as expected, gradually
reducing the quadcopter’s distance from the origin. However, once the quadcopter
returns within the threshold and the return behavior deactivates. If the quadcopter later
exceeds the threshold again, the function resumes using the old which causes the
scaling factor to be immediately small or even negative. As a result, the “Return-to-
Home” mechanism does not function correctly on subsequent violations because the
system behaves as if it is already far along or even finished with the return sequence.

Distance (m)
3000

0 150 300 450 600 750 900 t,sec

1" mReturning flag

0 150 300 450 600 750 900 t,sec
Fig. 5. Simulation results with the original function

The designer has two strategies to choose from:

- verify that a specified property (requirement) always holds for the model
under all possible conditions. If the property can be proven, the designer gains
assurance that the system behaves as expected with respect to that property. If it
cannot be proven, it means that a formal proof could not be established — however,
this does not necessarily imply that the property is false;

- identify a specific scenario or counterexample where the property does
not hold. The tool searches for input conditions or sequences of events that lead to a
violation of the property.

The verification direction gets explored by applying the Property Proving tool to
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a quadcopter control model, identifying critical safety properties, and integrating formal
analysis into the existing model-based design workflow.

To support traceability and reduce false positives, the results of the verification
process were automatically parsed, and undecided or unreachable objectives may be
either resolved through model updates or justified manually.

The main task of the described formal analysis is the proper interpretation of the
established requirements in the form of a computer model. After all, it is the verbal and
computer forms of requirements that are the standard for analyzing the control system.
Thus, it is impractical to analyze the entire system, and then the model under analysis
makes sense to form from the supplemented functionality (the area highlighted in red
in Figure 3).

So that, the model under analysis is shown in Figure 6.

From the stated requirement, two properties can be formulated for analysis:

- if the quadcopter moves away from the pilot to a limiting distance (1000 m),
the control system must be forced to switch to automatic mode — Property A,

- when the control system switches to automatic mode, the quadcopter should
return to the pilot — Property B.
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Fig. 6. Model under analysis

To formally verify the expected behavior, the Property Proving tool is used. It
allowed the definition and checking of properties that guarantee the quadcopter, after
exceeding a distance threshold, must eventually reduce its position vector below the
threshold again, regardless of how many times the condition is triggered.

The implementation diagram of these two properties is shown in Figure 7.
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Fig. 7. Implementation of the properties

As can be seen from the Property Proving Report in Figures 8 and 9, the
presented upgraded quadcopter control system does not meet the properties. Also,
upon completion of the analysis, the report provides a counterexample with input
values, for which the output parameters are false relative to the properties in Figure 8.
At the same time, the correctness of the implementation of property B is confirmed by
Figure 9.

Chapter 3. Proof Objectives Status

Content

Objectives Falsified with Counterexamples

Objectives Falsified with Counterexamples

Model Item Description

# | Type

Analysis Time (sec)

Counterexample

1 | Proof objective | Verification Subsystem/Proof Objective | Objective: T

12

1

Chapter 4. Properties
Content

Verification Subsystem/Proof Objective
Verification Subsystem/Proof Objective

Summary

Model Item: Verification Subsystem/Proof Objective

Property:  Objective: T

Status: Falsified

Counterexample
Time 0 0.001-0.999 | 1 1.001-1.999 | 2
Step 1 2-1000 1001 1002-2000 2001
X ctrl - - - - -
Y _ctrl - - - - -
Z_ctrl - - - - -
X_actual 1 0 1001 0 1000
Y actual | 1 - 1 - 1
Z_actual 1 - 1 - 1

Fig. 8. An excerpt from the report of the upgraded control system,
indicating non-compliance with property A
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Chapter 3. Proof Objectives Status

Content

Objectives Valid

Objectives Valid
# | Type Model Item Description Analysis Time (sec) | Counterexample
1 | Proof objective | Verification Subsystem/Proof Objectivel Objective: T 4 na

Chapter 4. Properties
Content

Verification Subsystem/Proof Objectivel

Verification Subsystem/Proof Objectivel

Summary

Model Item: Verification Subsystem/Proof Objectivel

Property:  Objective: T
Status: Valid

Fig. 9. An excerpt from the report of the upgraded control system, indicating
compliance with property B

3. Results and Discussion

Per the Figure 8, using the simplest case as a counterexample, Property
Proving provides with the distances of 1001 and 1000 by X_actual, and the 1000 is the
sample of time when the returning flag must be set, but it is not. The report results (see
Figure 8) correspond to the simulation results (see Figure 5).

The data from the counterexample may be used for simulation testing with
further debugging, manual inspection. The generated by Property Proving harness for
the counterexample (see Figure 8) is shown in Figure 10.

X_ctrl X_ctrl
Y ctrl Y ctrl R
Distance
Z ctrl > Z_ctrl
X_actual X_actual
ﬁL Y _actual Y _actual returning
Returning
Z_actual Z_actual
— NE 4

Fig. 10. Harness model for the model under analysis

If run its simulation, the logs of counterexample may be visualized, as presented
in Figure 11 in form of graphs. Since the formal analysis is applied not to the
quadcopter’s behavior but to the logic of the “Return-to-Home” function, the distance
graph is valid. However, according to Property A (see Figure 7), the returning flag
should be latched at the 1st sec when the 1000 m threshold has been reached or
exceeded.

The corresponding graph of the flag in Figure 10 indicates violation of this logic,
as does the graph in Figure 5.
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The process of debugging and correction is iterative: with subsequent
modifications of the computer model, the Property Proving may generate some other
counterexamples.

1000 X_actual (m)

0 02 04 06 08 1 12 14 16 1.8 tsec

Y_actual (m) : Z_actual (m)

0 02 04 06 08 1 12 14 16 18 tsec O 02 04 06 08 1 12 14 16 1.8 tsec

1000

Returning_flag Distance (m)

0 02 04 06 08 1 12 14 16 1.8 tsec 0 02 04 06 08 1 12 14 16 1.8 t,sec

Fig. 11. Results of the harness model simulation

In the end, Figure 12 shows the updated “Return-to-Home” function of the
upgraded quadcopter automatic control system.

function[x_rth,y rth,z rth,r,returning]=R T H(x,y,Zz)
persistent t now
p

e
pe

rsistent st I
if isempty(t now),t now = 0;end
if isempty(: gy flag),returning flag=false;end
if isempty(start pos),start p = zeros(3,1):;end
threshold = 1000,T return = 100,Ts = 0.1;
pos = [x; y; z]: N
r = norm(pos);
pos_cmd = pos;
if r > threshold, returning flag = true; end
if ret £l

returning = true;

if t now == 0,start g = pos; end

now = t now + Ts;

scale = max(0, 1 - t now / T_return);

pos_cmd = start_pos * scale;

x_rth = pos_cmd(1);

y_rth = pos_cmd(2);

z_rth = pos_cmd(3);
else

returning = false;

x rth = pos(l);

y_rth = pos(2);

z_rth pos(3):

Fig. 12. Updated “Return-to-Home” function of the upgraded quadcopter control
system

The results of the simulation of the updated computer model of the upgraded
quadcopter control system are shown in Figure 13.
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Fig. 13. Results of the simulation of the updated computer model of the upgraded
guadcopter control system

The presented graphs confirm that the “Return-to-Home” function works
correctly — the trigger is permanently set to “1”, despite the reduction in distance. At
the same time, the desired coordinates in the lower three graphs correspond to the
described behavior. So according to the graphs, the behavior is valid.

As can be seen from the new Property Proving report in Figure 14, the updated
model of the quadcopter control system meets the properties and there are no
counterexamples.

Chapter 3. Proof Objectives Status
Content

Objectives Valid

Objectives Valid

Type Model Item Description Analysis Time (sec) | Counterexample
Proof objective | Verification Subsystem/Proof Objective Objective: T 4 n'a

Proof objective | Verfication Subsystem/Proof Objectivel Objective: T 4 n'a
Chapter 4. Properties

Content

b | | Ak

Verification Subsystem/Proof Objective

Verification Subsystem/Proof Objectivel

Verification Subsystem/Proof Objective

Summary

Model Item: Verification Subsystem/Proof Objective

Property:  Objective: T

Status: Valid

Verification Subsystem/Proof Objectivel

Summary

Model Item: Verification Subsystem/Proof Objectivel
Property:  Objective: T
Status: Valid

Fig. 14. Extract from the analysis results indicating compliance
with the properties A and B
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The resulting reports can be used for formal analysis, documentation of the
execution of the design stage of the control system. And then, in combination with tests
of the desired behavior, it is possible to approve the design stage and proceed to
design and production. Design errors are identified, which are often made due to the
human factor. With such detailed information (see Figures 8, 9 and 14), it is possible
to obtain a computer model that fully meets the properties in an iterative manner.

The formal verification confirmed that the “Return-to-Home” logic, as
implemented, consistently satisfies the expected properties under all admissible
conditions. Notably, that the Property Proving Reports have shown that the earlier
version of the “Return-to-Home” function exhibited faulty behavior due to improper
handling of the time counter. This was corrected by ensuring the persistent state reset
conditions aligned with spatial thresholds, which was verified by rerunning the property
checks.

Conclusions

The study demonstrates a structured application of formal verification
techniques to the control logic of a quadcopter system using the Property Proving tool
in Simulink Design Verifier™. Specifically, the correctness of the “Return-to-Home”
behavior was validated against predefined requirements through exhaustive model
checking. Unlike conventional simulation testing, which only explores selected
scenarios, Property Proving examined all reachable states of the control logic,
guaranteeing that the desired safety property holds within the given model structure.

The effectiveness of the method lies in its ability to detect logical inconsistencies
without relying on manually created test cases or real-world experiments. In one
instance, faulty logic in the temporal return function was identified and resolved. The
approach proved useful not only in confirming the intended behavior but also in
supporting safe model evolution by verifying updates in a traceable manner. This
demonstrates the tool's potential for reducing risk in the early stages of quadcopter
software development.

The key approach of this research is to integrate formal analysis directly into the
quadcopter control software development cycle. By modeling the required scenarios
as formal properties, the verification pipeline can be extended in future work. Since the
method is not tied to specific scenarios, behavior, or functionality, it can be applied to
all requirements, if needed, to establish a more comprehensive safety of the
quadcopter system.

A comprehensive analysis of the system based on all properties takes about 12
seconds for falsified results (see Figure 8) and 4 seconds for valid results (see Figure
14). During this time, interactive reports are generated with detailed information, and
there is an option to visualize and debug counterexamples (if any are found) (see
Figures 10 and 11).

One drawback of formal analysis is the complete reliance on the formulated
properties and their implementation. If errors in the model due to human factors are
identified during the analysis, errors in the testing and analysis strategy require a more
rigorous and in-depth verification.

A second drawback of using the Simulink Design Verifier™ application is its
incompatibility with many blocks [12]. This complicates the implementation of
properties for Property Proving analysis, which can lead to significant time expenditure
and render the use of formal analysis tools inefficient.

However, it should be remembered that neither analysis nor testing
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demonstrates the absence of errors or defects [13]. It is important not to overoptimize
the product, as the model object always idealizes the original object.

The analysis was applied to a specific safety function; however, the
methodology is extensible to other failure scenarios such as signal loss, actuator faults,
or battery depletion. Future work will involve expanding the set of formally specified
requirements to build a more comprehensive safety profile for the entire flight control
system.
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3acTocyBanns Property Proving mo nporpamsoro 3aée3ne4yeHHst
JJISL YIIPABJIHHS MOJbOTOM KBaJIpPOKoONTEpPa

O6’ekTOM [OOCNIAKEHHA € KOMM'IOTEPHA MOAESNlb CUCTEMM aBTOMATUYHOIO
ynpaBniHHA  KBagpokonTepoM. [lpeamMeToM  OOCHIMKEHHA €  3acTOCyBaHHS
dopmManbHUX MeToAiB ONA aHanidy Ta NepeBipkM BUMOr O CUCTEM YrpasliHHA
KBagpokonTepamu, 3 OCOGNMBUM aKUEHTOM Ha MOXMMBOCTI iHCTpyMeHTy Simulink
Design Verifier™. OcHOBHa MeTa [OCRiQKEHHS Nonsrae B TOMY, WOO NigBMWMTH
3aranbHy HaginHiCTb po3pobrieHoi mModeni KBagpoKonTepa LWASXOM 3acTOCYBaHHS
dopmanbHUX MeTOoAIB aHasnidy Ha eTani NPOEKTyBaHHS, WOO BUABUTU MNOTEHLiNHI
NOriYHI  Ta CTPYKTYPHIi NOMUMKA nepeqd isudHMM  BnNpoBagXeHHAM. 3apgadi
AOCTiIKEHHS BKNOYaOTh: NPOBEEeHHSA KOMMNIIEKCHOro orngaay npobnem, noB’s3aHux 3
ekcnnyaTtauieto KOMepUinHMX KBagpoKONTEePHUX nnaTtdopm; opMyrtoBaHHSA BUMOT
Ge3nekn 0O ynpaBniHHA NOSILOTOM KBagpoKonTepa; po3pobka aeTanbHol iMiTauinHoT
MOAesni  CcUcTeMn  ynpaeriHHA 3  BUKOPUCTAHHAM cepegosuwa  Simulink®;
BUKOPUCTaHHSA (OYHKLiOHanNbHNX MoxnmBocTen Property Proving Ans BUKOHaHHS
doopmaribHOI NepeBIPKN KPUTUYHUX BNACTUBOCTEN CUCTEMW; aHani3 Ta iHTepnpeTauis
BepudikaLinHMX 3BiTiB, CTBOPEHUX IHCTPYMEHTOM; a TaKOX BUSBIIEHHS NPUXOBaHUX
Hefonikie abo HeBigNOBIOHOCTENW, $Ki MOXYTb MNOCTaBUTU nig 3arpody ©6e3neky
cucteMn. 3acTOCOBaHO Taki MeToau: dpopmMarnbHa MepeBipka 3 BUKOPUCTAHHAM
moaynsa Property Proving, iMmiTauiiHe MoenoBaHHA, CTaTUYHWIA aHania kogy Ta
TECTyBaHHS Ha OcHoBi mogeni. OTpumaHo Taki peaynbTaTi: NPOLEMOHCTPOBAHO, K
dopmarnbHi MeToan nepesipku, Taki Ak Property Proving, MOXyTb OyTW 3aCcTOCOBaHi
ANS  NepeBipkKM  BaxnueBux Ona ©0e3nekn nNOBELIHOK CUCTEM  yrnpaBniHHS
KBagpokonTepamu, [oBeAeHOo, LWo BukopuctaHHsa Simulink Design  Verifier™
BUABMNOCS ePEKTUBHUM Y BUABIEHHI CNabKnx MiCcLb MPOEKTYBaAHHS Ha PaHHIX cTagiax
LUKITYy pO3p0o6KK, 3MEHLUYIOYN nodanblinin pusnk i nepepobky. Kpim Toro, CTBOpeHHS
IHTEpPaKTMBHMX AiarHOCTMYHMX 3BIiTiB CNpUSIE Bidyani3auii cueHapiie 360to Ta nigTpumye
iTepaTMBHe nokpaweHHs. BucHoBkn. 3acTtocyBaHHSA OpManbHUX IHCTPYMEHTIB
aHanidy, Takmx €k Simulink Design Verifier™, npeacrtaBnsie uiHHMA nigxig oo
NMOCUMEHHA HaQIMHOCTI CUCTEMU YNpaBriHHA KBaAPOKONTEPOM 3a YMOBM, WO Moaeni
npaBunbHO nobyaoBaHi Ta BMACTUMBOCTI PETENbHO BM3HA4YeHi. HesBaxaroum Ha
HasBHICTb OBOMEXeHb LUen IHCTPYMEHT 3anuaeTbCa MNOTYXXHUM AOMNOBHEHHAM A0
TpaguUINHOIrO TecTyBaHHA, OCOGMMBO nMig 4ac BUPILWEHHA BUMOr OO CUCTEMM 3
BUCOKMM piBHEM HaAiNHOCTI. [ocCnigKeHHs nigkpecrne HeoOXigHICTb iHTerpauii
dopmanbHUX MeToaiB y CTaH4apTHI poboui npouecu Bepudikauii, o6 36anaHcyBaTu
TEOPETUYHY TOYHICTb i3 NMPAKTUYHOK NEPEBIPKOIO.

Knouosi cnoBa: BINJ1A; kBagpokonTep; cuctema ynpasniHHS; NPOEKTYBAHHS;
CTaTU4YHUI aHanis; property proving; KOMM’rOTEpHa MOAENb.
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