PROBABILISTIC APPROACHES TO BIG DATA PROCESSING IN COLLABORATIVE FILTERING BASED RECOMMENDATION SYSTEMS
Abstract
Keywords
Full Text:
PDFReferences
Harper, F. M. & Li, X. & Chen, Y. & Konstan, J. A. (2005). An economic model of user rating in an online recommender system, in User Modeling 2005, vol. 3538 of Lecture Notes in Computer Science, Springer, August 2005, 307–316,
Resnick, P. & Iacovou, N. & Suchak, M. Bergstrom, P. & Riedl, J. (1994) GroupLens: an open architecture for collaborative filtering of netnews,” in ACM CSCW ’94, 175–186.
Bennett J. & Lanning, S. (2007). The netflix prize, in KDD Cup and Workshop’07.
Herlocker, J. & Konstan, J. A. & Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms,” Information Retrieval, vol. 5, no. 4, 287–310.
Sarwar, B. M. & Karypis, G. & Kon-stan, J. A. & Riedl, J. T. (2000). Application of dimensionality reduction in recommender system — a case study,” in WebKDD 2000.
Brand, M. (2003). Fast online SVD revisions for lightweight recommender systems, in SIAM International Conference on Data Mining, 37–46.
Broder, Andrei Z. (1997). On the resemblance and containment of documents", Compression and Complexity of Sequences: Proceedings, Positano, Amalfitan Coast, Salerno, Italy, June 11-13, 1997 (PDF), IEEE, 21–29.
Broder, Andrei Z. & Charikar, Moses & Frieze, Alan M. & Mitzenmacher, Michael (1998), Minwise independent permutations, Proc. 30th ACM Symposium on Theory of Computing (STOC '98), New York, NY, USA: Association for Computing Machinery, 327–336
Leskovec, J. & Rajaraman, A. & Ullman, J.D. (2014). Mining of massive datasets. Cambridge University PressReferences , 476.
Refbacks
- There are currently no refbacks.