NON-EUCLIDEAN ECONOMY: PROBLEMS AND PROSPECTS OF DEVELOPMENT

Костянтин Вікторович Павлов

Abstract


The article proves the expediency of the wider use of the non-Euclidean metric in various economic and mathematical models in order to simplify the mathematical expression of the models themselves and to facilitate the solution of the problems associated with them, as well as to identify trends and patterns of socio-economic development at different levels of the management hierarchy using models. It is substantiated that the use of oblique coordinates in the study of socio-economic processes can be an important addition to the traditional application of rectangular Cartesian coordinates in the system of economic and mathematical modeling.


Keywords


non-Euclidean geometry; metric; non-Euclidean economy; production functions; economic-mathematical models

References


Мир математики: в 45т. Т. 36: Висенте Муньос. Деформируемые формы. Топология / Пер. с исп. – М.: Де Агостини, 2014. – 176с.

Ефимов Н. В. Высшая геометрия: 6-ое издание. – М.: Высшая школа, 1978. – 482с.

Математика: Энциклопедия / Под ред. Ю. В. Прохорова. – М.: Большая Российская энциклопедия, 2003. – 845с.

Браун М. Теория и измерение технического прогресса / Пер. с анг. – М.: Статистика, 1981. – 147с.

Теория игр: Учеб. пособие для университетов / Л. А. Петросян, Н.А. Зинкевич, Е.А. Селина – М.: Высшая школа, 1998. – 304 с.

Мир математики: в 45 т. Т. 4: Жуан Гомес. Когда кривые искривляются. Неевклидовы геометрии / Пер. с исп. – М.: Де Агостини, 2014. – 160 с.

References

Muños, Vicente. (2014). World of mathematics: in 45 t. T. 36: Deformable forms. The topology / Lane with sp. Moscow: De Agostini, 176.

Yefimov, N.V. (1978). The higher geometry: 6th issuing. Moscow: The higher school, 482.

Prokhorov, Yu.V. (2003). Mathematician: The encyclopedia. Moscow: Big Russian encyclo-pedia, 845.

Brown, M. (1981). The theory and meas-urement of technical progress. Moscow: Statis-tics, 147.

Petrosyan, L. A. & Zinkevich, N. A. & Selin E. A. (1998). Games theory: Studies. the manual for the universities. Moscow: The higher school, 304.

Gómez, Zhuan. (2014). World of mathematics: in 45 t. T. 4: When curves are bent. Non-Euclidean geometries. Moscow: De Agostini, 160.


Refbacks

  • There are currently no refbacks.