

Ч
А

С
О

П
И

С

Е

К
О

Н
О

М
І

Ч
Н

И
Х

Р

Е
Ф

О
Р

М

№

1

(
2

5
)

/
2

0
1

7

I

S
S

N

2

2
2

1
-

8
4

4
0

- 25 -

UDC 519.876

RUDENSKYY R., RUDENSKA V.

PROBABILISTIC APPROACHES TO BIG DATA PROCESSING IN COLLABORATIVE

FILTERING BASED RECOMMENDATION SYSTEMS

This article investigates the state and prospective of recommendation systems implementation under

the conditions of Big Data development. The article reveals key problems that arise when collaborative fil-

tering based recommendations are implemented and suggests approach to overcome these problems. The

proposed approach is based on ideas of expanding original user-item rating matrix and implementing min-

hash trick to estimate Jaccard similarity measure. Ability to track users’ behavior and account for it while

decision making revealed the new field related to market research, data and computer science that turned into

online recommendations system.

Keywords: recommendation systems, big data, collaborative filtering, Jaccard similarity, minhash.

Formulation of the problem. Huge

volumes and velocity of information needed

to be processed for good decisions making

turned computers to become efficient and ev-

idently the only reasonable solution for this

problem. With growing social networks and

net communications that led to expansion of

agents and available information fostered the

big data to arise on scene and become the

mainstream of data processing for the latest

several decades. Tons of information stored

and available online on the one hand and big

enough processing capacities on the other

hand made it possible to turn advertisement to

be addressed not to abstract but to fairly con-

crete and well known customer. Ability to

track users’ behavior and account for it while

decision making revealed the new field relat-

ed to market research, data and computer sci-

ence that turned into online recommendations

system.

Analysis of recent publications and

research. In the early 1990s one of the most

prominent technique for dealing with personal

recommendations based on analysis of the

behavior of large number of people became

the one named collaborative filtering. Auto-

mated collaborative filtering systems soon

followed, automatically locating relevant

opinions and aggregating them to provide

recommendations [1].

For example GroupLens [2] used this

technique to identify Usenet articles which

are likely to be interesting to a particular user.

Users only needed to provide ratings or per-

form other observable actions. One of the

most widely-known application of recom-

mender system technologies is Amazon.com.

Based on purchase history, browsing history,

and the item a user is currently viewing, they

recommend items for the user to consider

purchasing. Thus recommender systems and

collaborative filtering became a top topic of

human–computer interaction and machine

learning researchers.

The recent spike of activity in research-

es of recommender algorithms was motivated

by Netflix in 2006 when they announced the

$1 M prize to improve the state of movie rec-

ommendation. The objective of this competi-

tion was to build a recommender algorithm

that could beat their internal CineMatch algo-

rithm [3].

The purpose of the article. Before stat-

ing the problem let’s consider the main con-

cepts that lie behind recommendations based

on collaborative filtering.

Collaborative filtering techniques de-

pend on the triple (User, Item, Rating). This

triple means that users express preferences for

different items. A preference expressed by a

user for an item is called a rating. These rat-

ings can be of different forms, for example

like/dislike, differently scaled integer or real

numbers.

The main material research. The set

of all rating triples forms a sparse matrix re-

ferred to as the ratings matrix. The matrix has

n rows, where n is the number of Users and m

columns, where m is the number of Items.

Each element of the matrix is either a certain

rate that reflects a user’s reaction on an item

or nothing in case when a user has no opinion

of an item (table 1).

Ч
А

С
О

П
И

С

Е

К
О

Н
О

М
І

Ч
Н

И
Х

Р

Е
Ф

О
Р

М

№

1
(

2
5

)
/

2
0

1
7

I

S
S

N

2

2
2

1
-

8
4

4
0

 - 26 -

T a b l e 1

User-item rating matrix form
 Items

Item 1 Item 2 Item 3 Item m

Users User 1 r11 - r13 r1m

User 2 - r23 r2m

User n rn1 rn2 rn3 -

Source: developed by authors

The fundamental assumption behind

collaborative filtering (CF) is that if some us-

er is agree about the opinion of other users on

some set of items, then he or she will likely

agree about other items that has not been rat-

ed yet.

User-user CF is a straightforward algo-

rithmic interpretation of the core conceptual

assumption of collaborative filtering: find

other users whose past rating behavior is simi-

lar to that of the current user and use their rat-

ings on other items to predict what the current

user will like.

Besides the rating matrix, a user–user

CF system requires a similarity function:

:s U U R  , (1)

To generate recommendations for a

user iu CF predicts ratings for items not yet

rated by user. Predicted rating is usually com-

puted as weighted average of ratings where

similarities are used as the weights.

kj ik

k i
ij

ik

k i

R w

w
 







, (2)

where ij - is the predicted rating of item j

for user i ;

kjR - ratings of item j by user k ;

ikw - similarity between user i and k .

Once predictions have been computed,

the recommendation is formed as top N items

that have the highest predicted rating.

It is worth mentioning that formula (2)

in fact has mostly theoretical meaning while

to be used in actual recommending engines it

is the subject to different manipulations. The

most common manipulations are subtracting

the user’s mean rating that compensates for

the situation when some users tend to give

constantly higher or lower ratings than others;

normalize user ratings to z-scores by dividing

the offset from mean rating by the standard

deviation of each user’s ratings, thereby com-

pensating for both users differing in rating

spread and mean rating [4].

Another point is how to estimate user-

user similarity function. One pretty straight-

forward approach is to use simple correlation

between rows of User-item rating matrix (see

table 1). But as matrix becomes more sparse

(and it always does when number of items

grows substantially), the less informative cor-

relation is and it becomes a real problem

when we have millions of items whilst aver-

age number of rated items by a certain user is

measured by dozens or even less.

Another problem we face with user-

user CF is that user-user similarity matrix has

extremely large dimensions and size as well.

Say we have 10M users, which is not that

much for modern online trading systems. In

this case the size of user-user similarity ma-

trix can be estimated as 10M times 10M times

8 (as we store 8 bytes in each cell) divided by

2 as it is enough to have only upper diagonal

values) that yields over 363 Pb.

The size problem can be somehow

solved by switching to sparse matrices and in

case of quite sparse data it really helps but the

problem with computing complexity that is

 2O n still persists.

For the purposes of recommendations

making and solve problems mentioned above

in this article we propose to use Jaccard simi-

larity measure. With respect to recommenda-

tion making users similarity can be estimated

as follows:

Ч
А

С
О

П
И

С

Е

К
О

Н
О

М
І

Ч
Н

И
Х

Р

Е
Ф

О
Р

М

№

1

(
2

5
)

/
2

0
1

7

I

S
S

N

2

2
2

1
-

8
4

4
0

- 27 -

 ,
i j

i j

i j

u u
J u u

u u





. (3)

Here
i ju u stands for number of

items equally rated by two users;

i ju u - total number or items rated

by at least one of the users.

In case of binary ratings (likes/dislikes)

Jaccard similarity measure behaves like Co-

sine similarity that well fits our goal even for

quite sparse data. A bit different situation is

observed when the rates have certain scale,

say 1-5 or 1-9. In this case Jaccard similarity

measure behaves quite aggressively in the

sense that it does not account for the rates dif-

ference unlike for example correlation and

distinguish exactly two states: rates are equal

or rates are not equal.

As a workaround of this problem we

propose to supplement each rate provided by

user with certain range of rates. For example

if we have some item rated with 3 and 4 by

two different users original Jaccard similarity

measure would consider them as completely

different and add zero to the numerator in

formula (3).

Substitution of original rates with re-

spective ranges allows adjusting Jaccard simi-

larity measure to be less aggressive. For ex-

ample, if we have five point scale and intro-

duce the range of width three we get the fol-

lowing results (table 2).

So, as one can see from table 2 if users’

rates differ by one point the proposed ap-

proach (for given 5 point scale and range of

length 3) generates similarity of ½, if rates’

difference is 2 – the similarity is 1/5 and if

difference is 3 or more we get zero similarity

exactly like if we’d been using the original

Jaccard similarity formula.

One can easily see that for given range

of length  Rg and ranks’ difference  r the

similarity of two different points  1 2,p p can

be calculated as follows:

1 2
1 2

1 2

max((,),0)
(,)

(,)

r

r

Rg p p
sim p p

Rg p p





, (4)

T a b l e 2

Adjusted Jaccard similarity measure
Scale User 1

rate

User 2

rate

User 3

rate

User 1

Range

User 2

Range

User 3

Range

1 X

2 X X X

3 X X X X

4 X X X

5 X

Jaccard Similarity

 Original Adjusted

User 1 User 2 User 3 User 1 User 2 User 3

User 1 1 0 0 1 1/2 1/5

User 2 0 1 0 1/2 1 1/2

User 3 0 0 1 1/5 1/2 1

Source: developed by authors

whereas original Jaccard similarity approach

considers the similarity of points  1 2,p p like:

  1 2

1 2

1 2

1,
,

0,

p p
sim p p

p p


 


 (5)

So, this approach seems to solve the

problem of estimating similarities on sparse

data even for non- binary ratings. Another

problem that has been posted is the dimen-

sionality problem. To solve this one we pro-

pose to apply probabilistic algorithms.

It is worth mentioning that one can find

a variety of methods from the machine learn-

ing and artificial intelligence literature devot-

ed to dimensionality reduction like clustering,

principal component analysis, singular value

Ч
А

С
О

П
И

С

Е

К
О

Н
О

М
І

Ч
Н

И
Х

Р

Е
Ф

О
Р

М

№

1
(

2
5

)
/

2
0

1
7

I

S
S

N

2

2
2

1
-

8
4

4
0

 - 28 -

decomposition [5, 6] but they are out of scope

of this article.

As we led similarity measure to Jaccard

similarity it is reasonable to implement prob-

abilistic approach for Jaccard similarity esti-

mation known as MinHash technique.

MinHash (or the min-wise independent

permutations locality sensitive hashing

scheme) was invented by Andrei Broder

(1997), [7] and initially used in the AltaVista

search engine to detect duplicate web pages

and eliminate them from search results [8].

For our purposes instead of distinct

documents we have rows of user-item ratings

matrix where original ratings are supplement-

ed with corresponding ranges of ratings (see

table 2 as an example).

Let 1U and 2U are two different rows

from the adjusted user-ratings matrix and h is

the hash function that maps each member of

1U and 2U into integers.

Let  min 1h U is the minimal value we

get when  h is applied to each member of

1U and  min 2h U is the minimal value we get

when  h is applied to each member of 2U . It

can be shown that (for details see [9]):

      1 2 min 1 min 2, PrJ U U h U h U  , (6)

where  Pr  means probability of the

event   .

To estimate this probability we have

two options one is to use random permuta-

tions from 1U and 2U and calculate the fre-

quency when two minhash values were equal.

Another option is to use different hash

functions.

It is quite obvious that the more hash

functions or permutations we take the less

would be the error of Jaccard similarity esti-

mator. For any desired level of error the num-

ber of required repeats (permutations or hash

functions) can be find out as follows [9]:

2

1
n


 , (7)

where n - is the number of required re-

peats,

 - desired level of error.

So, instead of dealing with huge matri-

ces of user-user size we make n computa-

tions with original user-item matrix and get

sparse user-user similarity matrix.

Conclusions and research prospects.
In the article we investigated typical collabo-

rative filtering techniques, namely user-user

CF and encountered that it is the subject of

the following flaws:

1. In case of sparse data correlation

doesn’t work as it starts to account for

majority of absent ranks rather than the

present ones.

2. Switch to Cosine or Jaccard

similarity measures solves the sparse problem

but fits well only for binary ratings.

3. Extremely large number of users in

the system makes it hard to handle user-user

sized matrices even for modern distributed

computing power.

To handle these flaws we proposed to

substitute ranks with corresponding ranges of

ranks that made Jaccard similarity measure

more adequate and estimate Jaccard similari-

ties using minhash trick that is supposed to be

more efficient for extremely large datasets.

References

1. Harper, F. M. & Li, X. & Chen, Y. &

Konstan, J. A. (2005). An economic model of

user rating in an online recommender system,

in User Modeling 2005, vol. 3538 of Lecture

Notes in Computer Science, Springer, August

2005, 307–316,

2. Resnick, P. & Iacovou, N. & Suchak,

M. Bergstrom, P. & Riedl, J. (1994)

GroupLens: an open architecture for collabo-

rative filtering of netnews,” in ACM

CSCW ’94, 175–186.

3. Bennett J. & Lanning, S. (2007). The

netflix prize, in KDD Cup and Workshop’07.

4. Herlocker, J. & Konstan, J. A. &

Riedl, J. (2002). An empirical analysis of de-

sign choices in neighborhood-based collabo-

rative filtering algorithms,” Information Re-

trieval, vol. 5, no. 4, 287–310.

5. Sarwar, B. M. & Karypis, G. & Kon-

stan, J. A. & Riedl, J. T. (2000). Application

https://en.wikipedia.org/wiki/Locality_sensitive_hashing
https://en.wikipedia.org/wiki/Andrei_Broder
https://en.wikipedia.org/wiki/MinHash#CITEREFBroder1997
https://en.wikipedia.org/wiki/MinHash#cite_note-b97-1
https://en.wikipedia.org/wiki/AltaVista
https://en.wikipedia.org/wiki/MinHash#cite_note-bcfm-2

Ч
А

С
О

П
И

С

Е

К
О

Н
О

М
І

Ч
Н

И
Х

Р

Е
Ф

О
Р

М

№

1

(
2

5
)

/
2

0
1

7

I

S
S

N

2

2
2

1
-

8
4

4
0

- 29 -

of dimensionality reduction in recommender

system — a case study,” in WebKDD 2000.

6. Brand, M. (2003). Fast online SVD

revisions for lightweight recommender sys-

tems, in SIAM International Conference on

Data Mining, 37–46.

7. Broder, Andrei Z. (1997). On the re-

semblance and containment of documents",

Compression and Complexity of Sequences:

Proceedings, Positano, Amalfitan Coast, Sa-

lerno, Italy, June 11-13, 1997 (PDF), IEEE,

21–29.

8. Broder, Andrei Z. & Charikar, Moses

& Frieze, Alan M. & Mitzenmacher, Michael

(1998), Min-wise independent permutations,

Proc. 30th ACM Symposium on Theory of

Computing (STOC '98), New York, NY, USA:

Association for Computing Machinery, 327–

336

9. Leskovec, J. & Rajaraman, A. &

Ullman, J.D. (2014). Mining of massive da-

tasets. Cambridge University PressRefer-

ences , 476.

Руденський Р. А., Руденська В. В.

Ймовірнісні методи обробки великих даних в моделях рекомендаційних

систем на основі колаборативної фільтрації

У статті досліджуються стан та перспективи реалізації рекомендаційних систем в умо-

вах розвитку методів обробки великих даних. Розкриваються основні проблеми, що виника-

ють при впровадженні колаборативної фільтрації для подібних систем, та пропонується під-

хід для вирішення цих проблем. Пропонований підхід засновано на ідеї розширення матриці

власних користувальницьких рейтингів і реалізації алгоритму MinHash, що дозволяє оцінити

міру подібності Жаккара.

Ключові слова: рекомендаційні системи, великі дані, колаборативна фільтрація, подіб-

ність Жаккара, MinHash.

Руденский Р. А., Руденская В. В.

Вероятностные методы обработки больших данных в моделях рекомендательных си-

стем на основе коллаборативной фильтрации

В статье исследуются состояние и перспективы реализации рекомендательных систем

в условиях развития методов обработки больших данных. Раскрываются основные проблемы,

возникающие при внедрении колаборативних фильтрации для подобных систем, и предлага-

ется подход для решения этих проблем. Предлагаемый подход основан на идее расширения

матрицы собственных пользовательских рейтингов и реализации алгоритма MinHash, что

позволяет оценить меру подобия Жаккара.

Ключевые слова: рекомендательные системы, большие данные, коллаборативная

фильтрация, подобие Жаккара, MinHash.

Рецензент: Метеленко Н. Г. – доктор економічних наук, професор, завідувач кафедри

«Фінанси, банківська справа та страхування» Запорізької державної інженерної академії,

м. Запоріжжя, Україна.

Reviewer: Metelenko N. – Professor, Ph.D. in Economics, Head of Finance, Banking and

Insurance Department Zaporizhzhya State Ingeneering Academy Zaporizhzhya, Ukraine.

.

e-mail: Natalya381508@rambler.ru

Стаття подана

27.02.2017 р.

