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PROBABILISTIC APPROACHES TO BIG DATA PROCESSING IN COLLABORATIVE 

FILTERING BASED RECOMMENDATION SYSTEMS 

 
This article investigates the state and prospective of recommendation systems implementation under 

the conditions of Big Data development. The article reveals key problems that arise when collaborative fil-

tering based recommendations are implemented and suggests approach to overcome these problems. The 

proposed approach is based on ideas of expanding original user-item rating matrix and implementing min-

hash trick to estimate Jaccard similarity measure. Ability to track users’ behavior and account for it while 

decision making revealed the new field related to market research, data and computer science that turned into 

online recommendations system. 

Keywords: recommendation systems, big data,  collaborative filtering, Jaccard similarity, minhash. 

 

Formulation of the problem. Huge 

volumes and velocity of information needed 

to be processed for good decisions making 

turned computers to become efficient and ev-

idently the only reasonable solution for this 

problem. With growing social networks and 

net communications that led to expansion of 

agents and available information fostered the 

big data to arise on scene and become the 

mainstream of data processing for the latest 

several decades. Tons of information stored 

and available online on the one hand and big 

enough processing capacities on the other 

hand made it possible to turn advertisement to 

be addressed not to abstract but to fairly con-

crete and well known customer. Ability to 

track users’ behavior and account for it while 

decision making revealed the new field relat-

ed to market research, data and computer sci-

ence that turned into online recommendations 

system.  

Analysis of recent publications and 

research. In the early 1990s one of the most 

prominent technique for dealing with personal 

recommendations based on analysis of the 

behavior of large number of people became 

the one named collaborative filtering. Auto-

mated collaborative filtering systems soon 

followed, automatically locating relevant 

opinions and aggregating them to provide 

recommendations [1]. 

For example GroupLens [2] used this 

technique to identify Usenet articles which 

are likely to be interesting to a particular user. 

Users only needed to provide ratings or per-

form other observable actions. One of the 

most widely-known application of recom-

mender system technologies is Amazon.com. 

Based on purchase history, browsing history, 

and the item a user is currently viewing, they 

recommend items for the user to consider 

purchasing. Thus recommender systems and 

collaborative filtering became a top topic of 

human–computer interaction and machine 

learning researchers. 

The recent spike of activity in research-

es of recommender algorithms was motivated 

by Netflix in 2006 when they announced the 

$1 M prize to improve the state of movie rec-

ommendation. The objective of this competi-

tion was to build a recommender algorithm 

that could beat their internal CineMatch algo-

rithm [3].  

The purpose of the article. Before stat-

ing the problem let’s consider the main con-

cepts that lie behind recommendations based 

on collaborative filtering.  

Collaborative filtering techniques de-

pend on the triple (User, Item, Rating). This 

triple means that users express preferences for 

different items. A preference expressed by a 

user for an item is called a rating. These rat-

ings can be of different forms, for example 

like/dislike, differently scaled integer or real 

numbers. 

The main material research. The set 

of all rating triples forms a sparse matrix re-

ferred to as the ratings matrix. The matrix has 

n rows, where n is the number of Users and m 

columns, where m is the number of Items. 

Each element of the matrix is either a certain 

rate that reflects a user’s reaction on an item 

or nothing in case when a user has no opinion 

of an item (table 1).  
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T a b l e 1 

User-item rating matrix form 
 Items 

Item 1 Item 2 Item 3  Item m 

Users User 1 r11 - r13  r1m 

User 2 -  r23  r2m 

      

User n rn1 rn2 rn3  - 

Source: developed by authors 

 
The fundamental assumption behind 

collaborative filtering (CF) is that if some us-

er is agree about the opinion of other users on 

some set of items, then he or she will likely 

agree about other items that has not been rat-

ed yet. 

User-user CF is a straightforward algo-

rithmic interpretation of the core conceptual 

assumption of collaborative filtering: find 

other users whose past rating behavior is simi-

lar to that of the current user and use their rat-

ings on other items to predict what the current 

user will like.  

Besides the rating matrix, a user–user 

CF system requires a similarity function: 

 

:s U U R  ,                       (1) 

 

To generate recommendations for a 

user iu  CF predicts ratings for items not yet 

rated by user. Predicted rating is usually com-

puted as weighted average of ratings where 

similarities are used as the weights. 

 

kj ik

k i
ij

ik

k i

R w

w
 







,                       (2) 

 

where ij - is the predicted rating of item j  

for user i ; 

kjR  - ratings of item j  by user k ; 

ikw  - similarity between user i  and k . 

 

Once predictions have been computed, 

the recommendation is formed as top N items 

that have the highest predicted rating. 

It is worth mentioning that formula (2) 

in fact has mostly theoretical meaning while 

to be used in actual recommending engines it 

is the subject to different manipulations. The 

most common manipulations are subtracting 

the user’s mean rating that compensates for 

the situation when some users tend to give 

constantly higher or lower ratings than others; 

normalize user ratings to z-scores by dividing 

the offset from mean rating by the standard 

deviation of each user’s ratings, thereby com-

pensating for both users differing in rating 

spread and mean rating [4]. 

Another point is how to estimate user-

user similarity function. One pretty straight-

forward approach is to use simple correlation 

between rows of User-item rating matrix (see 

table 1). But as matrix becomes more sparse 

(and it always does when number of items 

grows substantially), the less informative cor-

relation is and it becomes a real problem 

when we have millions of items whilst aver-

age number of rated items by a certain user is 

measured by dozens or even less. 

Another problem we face with user-

user CF is that user-user similarity matrix has 

extremely large dimensions and size as well. 

Say we have 10M users, which is not that 

much for modern online trading systems. In 

this case the size of user-user similarity ma-

trix can be estimated as 10M times 10M times 

8 (as we store 8 bytes in each cell) divided by 

2 as it is enough to have only upper diagonal 

values) that yields over 363 Pb. 

The size problem can be somehow 

solved by switching to sparse matrices and in 

case of quite sparse data it really helps but the 

problem with computing complexity that is 

 2O n  still persists. 

For the purposes of recommendations 

making and solve problems mentioned above 

in this article we propose to use Jaccard simi-

larity measure. With respect to recommenda-

tion making users similarity can be estimated 

as follows: 
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 ,
i j

i j

i j

u u
J u u

u u





.                 (3) 

 

Here 
i ju u  stands for number of 

items equally rated by two users; 

i ju u  - total number or items rated 

by at least one of the users. 

In case of binary ratings (likes/dislikes) 

Jaccard similarity measure behaves like Co-

sine similarity that well fits our goal even for 

quite sparse data. A bit different situation is 

observed when the rates have certain scale, 

say 1-5 or 1-9. In this case Jaccard similarity 

measure behaves quite aggressively in the 

sense that it does not account for the rates dif-

ference unlike for example correlation and 

distinguish exactly two states: rates are equal 

or rates are not equal. 

As a workaround of this problem we 

propose to supplement each rate provided by 

user with certain range of rates. For example 

if we have some item rated with 3 and 4 by 

two different users original Jaccard similarity 

measure would consider them as completely 

different and add zero to the numerator in 

formula (3).  

Substitution of original rates with re-

spective ranges allows adjusting Jaccard simi-

larity measure to be less aggressive. For ex-

ample, if we have five point scale and intro-

duce the range of width three we get the fol-

lowing results (table 2). 

So, as one can see from table 2 if users’ 

rates differ by one point the proposed ap-

proach (for given 5 point scale and range of 

length 3) generates similarity of ½, if rates’ 

difference is 2 – the similarity is 1/5 and if 

difference is 3 or more we get zero similarity 

exactly like if we’d been using the original 

Jaccard similarity formula. 

One can easily see that for given range 

of length  Rg and ranks’ difference  r  the 

similarity of two different points  1 2,p p  can 

be calculated as follows: 

 

1 2
1 2

1 2

max( ( , ),0)
( , )

( , )

r

r

Rg p p
sim p p

Rg p p





,   (4) 

T a b l e  2 

Adjusted Jaccard similarity measure 
Scale User 1 

rate 

User 2 

rate 

User 3 

rate 

User 1 

Range 

User 2 

Range  

User 3 

Range 

1    X   

2 X   X X  

3  X  X X X 

4   X  X X 

5      X 

Jaccard Similarity 

 Original Adjusted 

User 1 User 2 User 3 User 1 User 2 User 3 

User 1 1 0 0 1 1/2 1/5 

User 2 0 1 0 1/2 1 1/2 

User 3 0 0 1 1/5 1/2 1 

Source: developed by authors 

 

whereas original Jaccard similarity approach 

considers the similarity of points  1 2,p p  like: 

 

  1 2

1 2

1 2

1,
,

0,

p p
sim p p

p p


 


              (5) 

 

So, this approach seems to solve the 

problem of estimating similarities on sparse 

data even for non- binary ratings. Another 

problem that has been posted is the dimen-

sionality problem. To solve this one we pro-

pose to apply probabilistic algorithms. 

It is worth mentioning that one can find 

a variety of methods from the machine learn-

ing and artificial intelligence literature devot-

ed to dimensionality reduction like clustering, 

principal component analysis, singular value 
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decomposition [5, 6] but they are out of scope 

of this article. 

As we led similarity measure to Jaccard 

similarity it is reasonable to implement prob-

abilistic approach for Jaccard similarity esti-

mation known as MinHash technique. 

MinHash (or the min-wise independent 

permutations locality sensitive hashing 

scheme) was invented by Andrei Broder 

(1997), [7] and initially used in the AltaVista 

search engine to detect duplicate web pages 

and eliminate them from search results [8]. 

For our purposes instead of distinct 

documents we have rows of user-item ratings 

matrix where original ratings are supplement-

ed with corresponding ranges of ratings (see 

table 2 as an example). 

Let 1U  and 2U  are two different rows 

from the adjusted user-ratings matrix and h  is 

the hash function that maps each member of 

1U  and 2U  into integers. 

Let  min 1h U  is the minimal value we 

get when  h  is applied to each member of 

1U  and  min 2h U  is the minimal value we get 

when  h  is applied to each member of 2U . It 

can be shown that (for details see [9]): 

 

      1 2 min 1 min 2, PrJ U U h U h U  ,   (6) 

 

where  Pr   means probability of the 

event   . 

To estimate this probability we have 

two options one is to use random permuta-

tions from 1U  and 2U  and calculate the fre-

quency when two minhash values were equal. 

Another option is to use different hash 

functions. 

It is quite obvious that the more hash 

functions or permutations we take the less 

would be the error of Jaccard similarity esti-

mator. For any desired level of error the num-

ber of required repeats (permutations or hash 

functions) can be find out as follows [9]: 

 

2

1
n


 ,                              (7) 

 

where n  - is the number of required re-

peats, 

  - desired level of error. 

So, instead of dealing with huge matri-

ces of user-user size we make n  computa-

tions with original user-item matrix and get 

sparse user-user similarity matrix. 

Conclusions and research prospects. 
In the article we investigated typical collabo-

rative filtering techniques, namely user-user 

CF and encountered that it is the subject of 

the following flaws: 

1. In case of sparse data correlation 

doesn’t work as it starts to account for 

majority of absent ranks rather than the 

present ones. 

2. Switch to Cosine or Jaccard 

similarity measures solves the sparse problem 

but fits well only for binary ratings. 

3. Extremely large number of users in 

the system makes it hard to handle user-user 

sized matrices even for modern distributed 

computing power. 

To handle these flaws we proposed to 

substitute ranks with corresponding ranges of 

ranks that made Jaccard similarity measure 

more adequate and estimate Jaccard similari-

ties using minhash trick that is supposed to be 

more efficient for extremely large datasets. 
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Руденський Р. А., Руденська В. В. 

Ймовірнісні методи обробки великих даних в моделях рекомендаційних 

систем на основі колаборативної фільтрації 

У статті досліджуються стан та перспективи реалізації рекомендаційних систем в умо-

вах розвитку методів обробки великих даних. Розкриваються основні проблеми, що виника-

ють при впровадженні колаборативної фільтрації для подібних систем, та пропонується під-

хід для вирішення цих проблем. Пропонований підхід засновано на ідеї розширення матриці 

власних користувальницьких рейтингів і реалізації алгоритму MinHash, що дозволяє оцінити 

міру подібності Жаккара. 

Ключові слова: рекомендаційні системи, великі дані, колаборативна фільтрація, подіб-

ність Жаккара, MinHash. 

 

Руденский Р. А., Руденская В. В. 

Вероятностные методы обработки больших данных в моделях рекомендательных си-

стем на основе коллаборативной фильтрации  

В статье исследуются состояние и перспективы реализации рекомендательных систем 

в условиях развития методов обработки больших данных. Раскрываются основные проблемы, 

возникающие при внедрении колаборативних фильтрации для подобных систем, и предлага-

ется подход для решения этих проблем. Предлагаемый подход основан на идее расширения 

матрицы собственных пользовательских рейтингов и реализации алгоритма MinHash, что 

позволяет оценить меру подобия Жаккара. 

Ключевые слова: рекомендательные системы, большие данные, коллаборативная 

фильтрация, подобие Жаккара, MinHash. 
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