Methods for constructing adaptive software for educational systems
Abstract
Keywords
Full Text:
PDF (Українська)References
Embretson, S. E., & Reise, S. P. Item response theory for psychologists. New York, Publ. Psychology Press, 2000. 384 p. DOI: 10.4324/9781410605269.
Weiss, D. J., & Kingsbury, G. G. Application of computerized adaptive testing to educational problems. Journal of Educational Measurement, 1984, vol. 21, iss. 4, pp. 361–375. DOI: 10.1111/j.1745-3984.1984.tb01040.x.
Boboc, R. G., Butilă, E. V., & Butnariu, S. Leveraging wearable sensors in virtual reality driving simulators: A review of techniques and applications. Sensors, 2024, vol. 24, iss. 13, article no. 4417. DOI: 10.3390/s24134417.
Nasri, M. Towards Intelligent VR Training: A Physiological Adaptation Framework for Cognitive Load and Stress Detection. arXiv, 2025. DOI: 10.48550/arXiv.2504.06461.
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. Artificial intelligence for student assessment: A systematic review. Applied Sciences, 2021, vol. 11, iss. 12, article no. 5467. DOI: 10.3390/app11125467.
Lord, F. M. Applications of Item Response Theory to Practical Testing Problems. New York, Routledge, 1980. 288 p. DOI: 10.4324/9780203056615.
Birnbaum, A., Lord, F. M., & Novick, M. R. Some Latent Trait Models and Their Use in Inferring an Examinee's Ability. Statistical Theories of Mental Test Scores. Reading, MA: Addison-Wesley, 1968. Available at: https://cir.nii.ac.jp/crid/1573668924705145728?lang=en. (accessed 15.05.2025).
Koedinger, K. R., Corbett, A. T., & Perfetti, C. The Knowledge-Learning-Instruction (KLI) framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 2012, vol. 36, iss. 5, pp. 757–798. DOI: 10.1111/j.1551-6709.2012.01245.x.
Sharma, K., Papamitsiou, Z., & Giannakos, M. Building pipelines for educational data using AI and multimodal analytics: A “grey-box” approach. British Journal of Educational Technology, 2020, vol. 51, iss. 6, pp. 3004–3031. DOI: 10.1111/bjet.12854.
DSTU ISO/IEC/IEEE 42010:2018. Inzheneriya system i prohramnykh zasobiv. Opys arkhitektury (ISO/IEC/IEEE 42010:2011, IDT) [DSTU ISO/IEC/IEEE 42010:2018. Systems and software engineering. Architecture description (ISO/IEC/IEEE 42010:2011, IDT)]. Kyiv: Ministry of Economic Development of Ukraine. Available at: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=77960 (accessed 15.05.2025). (In Ukrainian).
Weiss, D. J. Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 1982, vol. 6, iss. 4, pp. 473–492. DOI: 10.1177/014662168200600408.
Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Danish Institute for Educational Research, 1960. 184 p. Available at: https://books.google.com.ua/books/about/Probabilistic_Models_for_Some_Intelligen.html?id=aB9qLgEACAAJ&redir_esc=y. (accessed 15.05.2025.)
van der Linden, W. J., & Glas, C. A. W. Elements of adaptive testing. Springer, 2010. DOI: 10.1007/978-0-387-85461-8
Wood, D., Bruner, J. S., & Ross, G. The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 1976, vol. 17, iss. 2, 89–100. DOI: 10.1111/j.1469-7610.1976.tb00381.x.
Shaffer, F., & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Frontiers in Public Health, 2017, vol. 5, article no. 258. DOI: 10.3389/fpubh.2017.00258.
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 1996, vol. 93, iss. 5, pp. 1043–1065. DOI: 10.1161/01.CIR.93.5.1043.
Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation, 2018, vol. 15, iss. 3, pp. 235–245. DOI: 10.30773/pi.2017.08.17.
DOI: https://doi.org/10.32620/aktt.2025.6.11
