Anthropocentric model of class scheduling in higher education institutions of aerospace profile
Abstract
Keywords
Full Text:
PDF (Українська)References
Burke, E. K., & Petrovic, S. Recent research directions in automated timetabling. European Journal of Operational Research, 2002, vol. 140, no. 2, pp. 266-280. DOI: 10.1016/S0377-2217(02)00069-3.
Abdelhalim, E. A., & El Khayat, G. A. A utilization-based genetic algorithm for solving the university timetabling problem (UGA). Alexandria Engineering Journal, 2016, vol. 55, no. 2, pp. 1395-1409. DOI: 10.1016/j.aej.2016.02.017.
Smarr, B., & Schirmer, A. 3.4 million real-world learning management system logins reveal the majority of students experience social jet lag correlated with decreased performance. Scientific Reports, 2018, vol. 8, article no. 4793. DOI: 10.1038/s41598-018-23044-8.
Van der Vinne, V., Zerbini, G., Siersema, A., Pieper, A., Merrow, M., Hut, R.A., Roenneberg, T., & Kantermann, T. Timing of examinations affects school performance differently in early and late chronotypes. Journal of Biological Rhythms, 2015, vol. 30, no. 1, pp. 53-60. DOI: 10.1177/0748730414564786.
Goldin, A. P., Sigman, M., Braier, G., Golombek, D. A., & Leone, M. J. Interplay of chronotype and school timing predicts school performance. Nature Human Behaviour, 2020, vol. 4, no. 4, pp. 387-396. DOI: 10.1038/s41562-020-0820-2.
Enright, T., & Refinetti, R. Chronotype, class times, and academic achievement of university students. Chronobiology International, 2017, vol. 34, no. 4, pp. 445-450. DOI: 10.1080/07420528.2017.1281287.
Dickinson, D. L., & McElroy, T. The effects of time-of-day and circadian phase on risk preferences. Journal of Economic Behavior & Organization, 2017, vol. 137, pp. 37-51.
Rezaeipanah, A., Matoori, S. S., & Ahmadi, G. A hybrid algorithm for the university course timetabling problem using the improved parallel genetic algorithm and local search. Applied Intelligence, 2021, vol. 51, pp. 467-492. DOI: 10.1007/s10489-020-01833-x.
Abdelhalim, E. A., & El Khayat, G. A. A utilization-based genetic algorithm for solving the university timetabling problem (UGA). Alexandria Engineering Journal, 2016, vol. 55, no. 2, pp. 1395-1409. DOI: 10.1016/j.aej.2016.02.017.
Gozali, A. A., Kurniawan, B., Weng, W., & Fujimura, S. Solving university course timetabling problem using localized island model genetic algorithm with dual dynamic migration policy. IEEJ Transactions on Electrical and Electronic Engineering, 2020, vol. 15, no. 3, pp. 389-400. DOI: 10.1002/tee.23067.
Mahlous, A. R., & Mahlous, H. Student timetabling genetic algorithm accounting for student preferences. PeerJ Computer Science, 2023, vol. 9. DOI: 10.7717/peerj-cs.1200.
Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 2017, vol. 21, no. 4, pp. 965-979. DOI: 10.1007/s00500-015-1826-y.
Chrysafiadi, K., & Virvou, M. Fuzzy logic for adaptive instruction in an e-learning environment for computer programming. IEEE Transactions on Fuzzy Systems, 2015, vol. 23, no. 1, pp. 164-177. DOI: 10.1109/TFUZZ.2014.2310242.
Wittmann, M., Dinich, J., & Merrow, M., Roenneberg, T. Social jetlag: misalignment of biological and social time. Chronobiology International, 2006, vol. 23, no. 1-2, pp. 497-509. DOI: 10.1080/07420520500545979.
Carrell, S. E., Maghakian, T., & West, J. E. A's from Zzzz's? The causal effect of school start time on the academic achievement of adolescents. American Economic Journal: Economic Policy, 2011, vol. 3, no. 3, pp. 62-81. DOI: 10.1257/pol.3.3.62.
Oyeyode, O. A., & Nicholls, J. R. The relationship between circadian rhythm disruption and reflective thinking in university students. Chronobiology International, 2021, vol. 38, no. 3, pp. 355-363.
Lv, Z., Shen, H., & Saravanan, V. Artificial intelligence with fuzzy logic system for learning management evaluation in higher educational systems. Journal of Intelligent & Fuzzy Systems, 2021, vol. 40, no. 2, pp. 3501-3511. DOI: 10.3233/JIFS-189387.
Hasher, L., May, C. P., & Rahhal, M. J. Age and time of day effects on learning and memory in a non-human primate. Experimental Aging Research, 1999, vol. 25, no. 2, pp. 107-118.
Roenneberg, T., Wirz-Justice, A., & Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. Journal of Biological Rhythms, 2003, vol. 18, no. 1, pp. 80-90. DOI: 10.1177/0748730402239679.
Arbabi, T., Vollmer, M., Dörfler, C., & Randler, M. The influence of chronotype and intelligence on academic achievement in primary school is mediated by conscientiousness, midpoint of sleep and motivation. Chronobiology International, 2015, vol. 32, no. 3, pp. 349-357. DOI: 10.3109/07420528.2014.980508.
Horne, J. A., Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 1976, vol. 4, no. 2, pp. 97-110.
Zavada, A., Gordijn, M.C., Beersma, D.G., Daan, S., Roenneberg, T. Comparison of the Munich Chronotype Questionnaire with the Horne-Ostberg's Morningness-Eveningness Score. Chronobiology International, 2005, vol. 22, no. 2, pp. 267-278. DOI: 10.1081/CBI-200053536.
Roeser, K., Schlarb, A. A., & Kübler, A. The Chronotype-Academic Performance Model (CAM): Daytime sleepiness and learning motivation link chronotype and school performance in adolescents. Personality and Individual Differences, 2015, vol. 54, iss. 7, pp. 836-840. DOI: 10.1016/j.paid.2012.12.021.
Hsieh, T.C., Wang, T. I., Su, C. Y., & Lee, M. C. A fuzzy logic-based personalized learning system for supporting adaptive English learning. Educational Technology & Society, 2012, vol. 15, no. 1, pp. 273-288. Available at: http://www.jstor.org/stable/jeductechsoci.15.1.273. (accessed 14.06.2025).
Carskadon, M. A., Wolfson, A. R., Acebo, C., Tzischinsky, O., & Seifer, R. Adolescent sleep patterns, circadian timing, and sleepiness at a transition to early school days. Sleep, 1998, vol. 21, no. 8, pp. 871-881. DOI: 10.1093/sleep/21.8.871.
DOI: https://doi.org/10.32620/aktt.2025.6.07
