Lossy compression of multilook SAR images in the optimal operation point neighborhood by BPG-coder
Abstract
Keywords
Full Text:
PDFReferences
Lysenko, A. SAR Data Spatial Resolution Enhancement for Environmental Monitoring Tasks. International Conference of Young Professionals «GeoTerrace-2023», 2023, vol. 2023, no. 1, pp. 1–5. DOI: 10.3997/2214-4609.2023510010.
Gao, W., Liu, Y., Zeng, Y., Liu, Q., & Li, Q. SAR Image Ship Target Detection Adversarial Attack and Defence Generalization Research. Sensors, 2023, vol. 23, no. 4. DOI: 10.3390/s23042266.
Asiyabi, R. M., Ghorbanian, A., Tameh, S. N., Amani, M., Jin, S. & Mohammadzadeh, A. Synthetic Aperture Radar (SAR) for Ocean: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, vol. 16, pp. 9106–9138. DOI: 10.1109/JSTARS.2023.3310363.
Okada, Y., Nakamura, S., Iribe, K., Yokota, Y., Tsuji, M., Tsuchida, M., Hariu, K., Kankaku, Y., Suzuki, S., Osawa, Y., & Shimada, M. System design of wide swath, high resolution, full polarimietoric L-band SAR onboard ALOS-2. 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS, 2013, pp. 2408–2411. DOI: 10.1109/IGARSS.2013.6723305.
Datcu, M., Schwarz, G., Schmidt, K., & Reck, C. Quality Evaluation of Compressed Optical and SAR Images: JPEG vs. Wavelets. Proc. of 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95, 1995, pp. 1687–1689. Available at: https://elib.dlr.de/23745/ (accessed 20 November 2025).
Kozhemiakin, R., Abramov, S., Lukin, V., Djurović, B., Djurović, I., & Simeunović, M. Strategies of SAR image lossy compression by JPEG2000 and SPIHT. 2017 6th Mediterranean Conference on Embedded Computing (MECO), 2017, pp. 1–6. DOI: 10.1109/MECO.2017.7977176.
Deng, J., & Huang, L. Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance. Remote Sensing, 2024, vol. 16, no. 5. DOI: 10.3390/rs16050891.
Rusyn, B., Lutsyk, O., Lysak, Y., Lukenyuk, A., & Pohreliuk, L. Lossless image compression in the remote sensing applications. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), 2016, pp. 195–198. DOI: 10.1109/DSMP.2016.7583539.
Yin, D., Gu, Z., Zhang, Y., Gu, F., Nie, S., Feng, S., Ma, J., & Yuan, C. Speckle noise reduction in coherent imaging based on deep learning without clean data. Optics and Lasers in Engineering, 2020, vol. 133, article no. 106151. DOI: 10.1016/j.optlaseng.2020.106151.
Sun, Z., Leng, X., Zhang, M., Ren, H., & Ji, K. SAR Image Object Detection and Information Extraction: Methods and Applications. Remote Sensing, 2025, vol. 17, no. 12. DOI: 10.3390/rs17122098
Ko, J., & Lee, S. SAR Image Despeckling Using Continuous Attention Module. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, vol. 15, pp. 3–19. DOI: 10.1109/JSTARS.2021.3132027.
Liu, Z., Wang, S., & Gu, Y. SAR Image Compression With Inherent Denoising Capability Through Knowledge Distillation. IEEE Geoscience and Remote Sensing Letters, 2024, vol. 21, pp. 1–5. DOI: 10.1109/LGRS.2024.3386758.
Ponomarenko, N. N., Lukin, V. V., Kozhemiakin, R. A., Egiazarian, K. O., & Chobanu, M. K. Lossy and visually lossless compression of single-look SAR images. Telecommunications and Radio Engineering, 2013, vol. 72, no. 8, pp. 711–729. DOI: 10.1615/TelecomRadEng.v72.i8.60.
Kryvenko, S., Lukin, V., & Vozel, B. Lossy Compression of Single-channel Noisy Images by Modern Coders. Remote Sensing, 2024, vol. 16, no. 12. DOI: 10.3390/rs16122093.
Odegard, J. E., Guo, H., Lang, M., Burrus, C. S., Jr., R. O. W., Novak, L. M., & Hiett, M. Wavelet-based SAR speckle reduction and image compression. SPIE's 1995 Algorithms for Synthetic Aperture Radar Imagery II 1995, vol. 2487, pp. 259–271. DOI: 10.1117/12.210843.
Yee, D., Soltaninejad, S., Hazarika, D., Mbuyi, G., Barnwal, R., & Basu, A. Medical image compression based on region of interest using better portable graphics (BPG). 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 216–221. DOI: 10.1109/SMC.2017.8122605.
Lainema, J., Hannuksela, M., Malamal Vadakital, V., & Aksu, E. HEVC still image coding and high efficiency image file format. 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 71–75. DOI: 10.1109/ICIP.2016.7532321.
Chen, Y., Mukherjee, D., Han, J., Grange, A., Xu, Y., Parker, S., Chen, C., Su, H., Joshi, U., Chiang, C.-H., Wang, Y., Wilkins, P., Bankoski, J., Trudeau, L., Egge, N., Valin, J.-M., Davies, T., Midtskogen, S., Norkin, A., & Liu, Z. An Overview of Coding Tools in AV1: the First Video Codec from the Alliance for Open Media. APSIPA Transactions on Signal and Information Processing, 2020, vol. 9. DOI: 10.1017/ATSIP.2020.2.
Bondzulic, B., Pavlović, B., Stojanovic, N., & Petrovic, V. Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Military Technical Courier, 2022, vol. 70, pp. 62–86. DOI: 10.5937/vojtehg70-34739
Lukin, V., Kryvenko, S., & Pavliuk, A. Visually lossless compression of multilook SAR images. Aerospace Technic and Technology, 2025, pp. 123–133. DOI: 10.32620/aktt.2025.4.12.
Jamil, S. Review of Image Quality Assessment Methods for Compressed Images. Journal of Imaging, 2024, vol. 10, no. 5. DOI: 10.3390/jimaging10050113.
Nafchi, H., Shahkolaei, A., Hedjam, R., & Cheriet, M. Mean Deviation Similarity Index: Efficient and Reliable Full-Reference Image Quality Evaluator. IEEE Access, 2016, vol. 4, pp. 5579–5590. DOI: 10.1109/ACCESS.2016.2604042.
Reisenhofer, R., Bosse, S., Kutyniok, G., & Wiegand, T. A Haar Wavelet-Based Perceptual Similarity Index for Image Quality Assessment. Signal Processing Image Communication, 2018, vol. 61, pp. 33–43. DOI: 10.1016/j.image.2017.11.001.
Al-Shaykh, O. K., & Mersereau, R. M. Lossy compression of noisy images. IEEE Transactions on Image Processing, 1998, vol. 7, no. 12, pp. 1641–1652. DOI: 10.1109/83.730376.
Rubel, O., Lukin, V., Rubel, A., & Egiazarian, K. Selection of Lee Filter Window Size Based on Despeckling Efficiency Prediction for Sentinel SAR Images. Remote Sensing, 2021, vol. 13, no. 10. DOI: 10.3390/rs13101887.
Lukin, V., Kolganova, O., & Kryvenko, S. Lossy Compression of Images Corrupted by Spatially Correlated Noise. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2016, pp. 698-702. DOI: 10.1109/TCSET.2016.7452157.
Sentinel-1. Available at: https://sentinels.copernicus.eu/copernicus/sentinel-1 (accessed 20 November 2025).
Abdikan, S., Balik Sanli, F., Ustuner, M., & Calò, F. Land Cover Mapping Using SENTINEL-1 SAR Data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, pp. 757–761. DOI: 10.5194/isprs-archives-XLI-B7-757-2016.
Fan, D., Zhao, T., Jiang, X., García-García, A., Schmidt, T., Samaniego, L., Attinger, S., Wu, H., Jiang, Y., Shi, J., Fan, L., Tang, B.-H., Wagner, W., Dorigo, W., Gruber, A., Mattia, F., Balenzano, A., Brocca, L., Jagdhuber, T., & Peng, J. A Sentinel-1 SAR-based global 1-km resolution soil moisture data product: Algorithm and preliminary assessment. Remote Sensing of Environment, 2025, vol. 318, article no. 114579. DOI: 10.1016/j.rse.2024.114579
Di Martino, G., Poderico, M., Poggi, G., Riccio, D., & Verdoliva, L. SAR image simulation for the assessment of despeckling techniques. 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, pp. 1797–1800. DOI: 10.1109/IGARSS.2012.6351163.
De Fioravante, P., Luti, T., Cavalli, A., Giuliani, C., Dichicco, P., Marchetti, M., Chirici, G., Congedo, L., & Munafò, M. Multispectral Sentinel-2 and SAR Sentinel-1 Integration for Automatic Land Cover Classification. Land, 2021 vol. 10, no. 6, article no. 611. DOI: 10.3390/land10060611.
Li, F., Ieremeiev, O., Lukin, V., & Egiazarian, K. BPG-Based Lossy Compression of Three-Channel Remote Sensing Images with Visual Quality Control. Remote Sensing, 2024, vol. 16, no. 15, article no. 2740. DOI: 10.3390/rs16152740.
Zemliachenko, A. N., Lukin, V. V., Ponomarenko, N. N., Egiazarian, K. O., & Astola, J. Still image/video frame lossy compression providing a desired visual quality. Multidimensional Systems and Signal Processing, 2016, vol. 27, no. 3, pp. 697–718. DOI: 10.1007/s11045-015-0333-8.
DOI: https://doi.org/10.32620/aktt.2025.6.05
