Optimization of cooling channels of liquid rocket engines using a differential heat transfer model
Abstract
Keywords
Full Text:
PDFReferences
Salakhutdinov G. M. Razvitie metodov teplozashchiti zhidkostnikh raketnikh dvigatelei [Development of thermal protection methods for liquid rocket engines]. Moscow, Nauka Publ., 1984. 144 p. (In Russian).
Zarubin B. C. Temperaturnie polya v kon-struktsii letatelnikh apparatov (Metodi rascheta) [Temperature fields in aircraft structures (Calculation methods)]. Moscow, Mashinostroenie Publ., 1978, 184 p. (In Russian).
Dubrovskiy, I., & Bucharskyi, V. Development of a method of extended cells for the formulation of boundary conditions in numerical integration of gas dynamics equations in the domains of a curvilinear shape. Eastern-European Journal of Enterprise Technologies, 2020, vol. 5, no. 7 (107), pp. 74–82. DOI: 10.15587/1729-4061.2020.213795.
Bucharskyi, V., Zhang, L.-H., & Wan, Y.-L. Improvement in Time Efficiency in Numerical Simulation for Solid Propellant Rocket Motors (SPRM). Journal of Propulsion Technology, 2018, vol. 39, no. 1, pp. 92-99. DOI:10.13675/j.cnki.tjjs.2018.01.010.
Leonardi, M., Pizzarelli, M., & Nasuti, F. Analysis of thermal stratification impact on the design of cooling channels for liquid rocket engines. International Journal of Heat and Mass Transfer, 2019, vol. 135, pp. 811–821. DOI: 10.1016/j.ijheatmasstransfer.2019.02.028.
Desai, R., & Kuzhiveli, B. Integrated modular design and analysis of liquid propellant rocket engine working on liquid methane-oxygen expander cycle. IOP Conf. Ser.: Mater. Sci. Eng, 2022, vol. 1240, article no. 012014. DOI: 10.1088/1757-899X/1240/1/012014.
Li, X., Wu, S., Zhang, Q., Li, X., & Chen, S. A novel method based on the calculus of variations to optimize the cooling passage configuration in thermal protection structure. IOP Conference Series: Journal of Physics, 2024, vol. 2764, article no. 012038. DOI: 10.1088/1742-6596/2764/1/012038.
Lv, J., Du, G., Jin, P., & Li, R. Heat Transfer Analysis and Structural Optimization for Spiral Channel Regenerative Cooling Thrust Chamber. International Journal of Aerospace Engineering, 2023. DOI: 10.1155/2023/8628107.
Atefi, E., & Naraghi, M. Optimization of Regeneratively Cooled Rocket Engines Cooling Channel Dimensions. AIAA Propulsion and Energy 2019 Forum, 2019. DOI: 10.2514/6.2019-3938.
Ibarra-Lozano, P., & Milo, V. P. Comprehensive Design of the Regenerative Cooling System for a Student-Designed LOx/Ethanol Liquid Rocket Engine. 11th European Conference For Aeronautics And Space Sciences (EUCASS), 2025. Available at: https://www.eucass.eu/component/docindexer/?task=download&id=7386. (accessed 12.11.2024).
Litvinov, O., Koloskova, H., & Kondratenko, O. Optymizatsiia parametriv okholodzhuvalnoho traktu kamery zghoriannia ridynnoho raketnoh dvyhuna. [Optimization of parameters of the cooling tract of the combustion chamber of a real rocket engine]. Visnyk Dniprovsʹkoho universytetu. Seriya: Raketno-kosmichna tekhnika – Journal of Rocket-Space Technology, 2024. vol. 33, no. 4-28, pp. 38-44. DOI: 10.15421/452422. (In Ukrainian).
Sliusariev, V., & Bucharskyi, V. Development of a mathematical model for the cooling channel of a liquid propellant rocket engine’s chamber with respect for variations in coolant density. Eastern-European Journal of Enterprise Technologies, 2024, vol. 6, no. 1 (132), pp. 14–20. DOI: 10.15587/1729-4061.2024.316236.
Tizon, J. M., & Roman, A. A Mass Model for Liquid Propellant Rocket Engines. 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017. DOI: 10.2514/6.2017-5010.
Lizin, V. T., & Pyatkin, V. A. Proektirovanie tonkostennikh konstruktsii [Design of thin-walled structures]. Moscow, Mashinostroenie Publ., 2003. 448 p. (In Russian).
Gakhun, G. G., Alekseev, I. G., Berezanskaya, E. L., Gutkovskii, E. L., & Khovanskii, O. M. Atlas konstruktsii ZhRD. Opisaniya. Chast 1. [Atlas of Liquid Propellant Engine Designs. Descriptions. Part 1]. Moscow, MAI, kafedra 203 Publ., 1969. 226 p. (In Russian).
DOI: https://doi.org/10.32620/aktt.2025.6.03
