Hybrid software architecture with peripheral computing for adaptive VR driving training systems with biometric feedback
Abstract
Keywords
Full Text:
PDF (Українська)References
Boboc, R. G., Butilă, E. V., & Butnariu, S. Leveraging Wearable Sensors in Virtual Reality Driving Simulators: A Review of Techniques and Applications. Sensors (Basel), 2024, vol. 24, iss. 13, article no. 4417. DOI: 10.3390/s24134417.
Nasri, M. Towards Intelligent VR Training: A Physiological Adaptation Framework for Cognitive Load and Stress Detection. Jasani, K. [cs.HC]. 2025. Available at: https://arxiv.org/abs/2504.06461 (accessed 10.04.2025).
Kopaee, A. M., Hajseyedtaghia, S. A., Chitsaz, H. Latency Reduction in CloudVR: Cloud Prediction, Edge Correction. arXiv:2410.01898 [eess.SY]. 2024. DOI: 10.48550/arXiv.2410.01898.
Alencar, D. Dynamic Allocation of Microservices for Virtual Reality Content Delivery to Provide Quality of Experience Support in a Fog Computing Environment. Proc. Brazilian Computing Society (SBC). 2023. Available at: https://sol.sbc.org.br/index.php/ctd/article/view/24853 (accessed 12.10.2024).
Van der Perk, R., & et al. Distributed Safety Mechanism for Autonomous Vehicle Simulation. IEEE Trans. Intell. Transport. Syst., 2020, vol. 21, iss. 8, pp. 3345-3358. DOI: 10.1109/TITS.2019.2923456.
Vaughan, N., & et al. A Review of Virtual Reality Training for Surgical Education. Frontiers Robotics AI., 2016, vol. 3, article no. 38. DOI: 10.3389/frobt.2016.00038.
Chiossi, F., & et al. Adaptive VR with Brain-Computer Interfaces for Complex Visuomotor Task Training. CHI, 2025. DOI: 10.1145/3544548.3581389.
Mabioca, O., & et al. Event-Driven Architecture Patterns for Real-Time VR Systems. IEEE Software, 2025, vol. 42, iss. 1, pp. 78-86. DOI: 10.1109/MS.2024.3456789.
Casasnovas, M., & et al. Experimental Evaluation of Interactive Edge/Cloud Virtual Reality Applications Using Unity Render Streaming. Computer Communications, 2024, vol. 224, pp. 112-125. DOI: 10.1016/j.comcom.2024.08.001.
Kämäräinen, T., & et al. Imperceptible Latency for Mobile Cloud Gaming. ACM MobiSys, 2018, pp. 88-100. DOI: 10.1145/3210240.3210323.
IEEE. Dynamic Microservice Placement Framework for VR in 5G with NFV. IEEE Commun. Magazine, 2021, vol. 59, iss. 5, pp. 112-118. DOI: 10.1109/MCOM.2021.2056789.
Rodrigues, H., Silva, A.R., Avritzer, A. Assessment of Performance and its Scalability in Microservice Architectures: Systematic Literature Review. Journal of Systems and Software, Elsevier, 2025, vol. 208, article no. 111567. DOI: 10.1016/j.jss.2023.111567.
Lopez, P. A., &et al. Microscopic Traffic Simulation using SUMO. IEEE Intell. Transport. Syst. Conf., 2018, pp. 2575-2582. DOI: 10.1109/ITSC.2018.8569938.
Intel Corporation. Edge Computing in 5G Networks for Low-Latency Services. White Paper, 2019. Available at: https://intel.com/5g-edge-whitepaper-2019 (accessed 12.10.2024).
Imaginary Cloud. Top Scalability Patterns for Distributed Systems. Technical Blog, 2025. Available at: https://imaginarycloud.com/blog/scalability-patterns (accessed 15.05.2025).
Hogan, J., & et al. Analyzing Performance Issues of Virtual Reality Applications. arXiv:2211.02013 [cs.SE]. 2022. DOI: 10.48550/arXiv.2211.02013.
Geris, A., & et al. Balancing Performance and Comfort in Virtual Reality: A Configurable Framework for Optimizing VR Systems. Software: Practice and Experience, 2024, vol. 54, iss. 6, pp. 1128-1149. DOI: 10.1002/spe.3356.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. CARLA: An Open Urban Driving Simulator. Proceedings of the 1st Conference on Robot Learning (CoRL), 2017, arXiv:1711.03938 [cs.LG], pp. 1-16.
Azfar, T., Huang, K., Tracy, A., Misiewicz, S., Liu, C., & Ke, R. Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning. arXiv:2412.03925 [cs.RO]. 2024.
Cherukuri, B. R. Microservices and Containerization: Accelerating Web Application Development and Deployment. World Journal of Advanced Research and Reviews, 2020, vol. 8, iss. 2, pp. 234-245. DOI: 10.30574/wjarr.2020.8.2.0087.
Alhamad, A., & et al. Kubernetes-Based Orchestration for Scalable Microservices Deployment in Cloud-Native Environments. IEEE Access, 2023, vol. 11, pp. 45678-45691. DOI: 10.1109/ACCESS.2023.3284567.
Jasani, K. Performance Optimization in VR Applications: QA’s Role in Ensuring Quality and Efficiency. International Journal of Advances in Developmental Research, 2024, vol. 15, iss. 1, pp. 1287-1295. E-ISSN: 0976-4844.
AlShekh, R. H., & et al. The Role of Virtual Reality UDP Ethernet Communication in Network Performance Optimization. arXiv:2502.00785 [cs.NI]. 2025.
DOI: https://doi.org/10.32620/aktt.2025.5.09
