Application of thermal tomography method for detection of objects immersed in the ground
Abstract
Keywords
Full Text:
PDF (Українська)References
Fedorenko, G., Fesenko, H., & Kharchenko, V. Analiz metodiv i rozroblennya kontseptsiyi harantovanoho vyyavlennya ta rozpiznavannya vybukhonebezpechnykh predmetiv [Analysis of methods and development of the concept of guaranteed detection and recognition of explosive objects]. Suchasnyy stan naukovykh doslidzhenʹ ta tekhnolohiy v promyslovosti – Innovative Technologies and Scientific Solutions for Industries, 2022, no. 4 (22), pp. 20-31. DOI: 10.30837/ITSSI.2022.22.020. (In Ukrainian).
Yeom, S. Thermal Image Tracking for Search and Rescue Missions with a Drone. Drones, 2024, vol. 8, no. 2, article no. 53. DOI: 10.3390/drones8020053.
Fedorenko, G., Fesenko, H., Kharchenko, V., Kliushnikov, I., & Tolkunov, I. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models. Radioelectronic and Computer Systems. 2023, no. 2, pp. 143-159. DOI: 10.32620/reks.2023.2.12.
Heifetz, A., Shribak, D., Zhang, X., Saniie, J., L. Fisher, Z., Liu, T., Sun, J. G., Elmer, T., Bakhtiari, S., & Cleary, W. Thermal tomography 3D imaging of additively manufactured metallic structures. AIP Advances, 2020, vol. 10, iss. 10, article no. 105318. DOI: 10.1063/5.0016222.
Thanh, N. T., Sahli, H., & Hao, D. N. Infrared Thermography for Buried Landmine Detection: Inverse Problem Setting. IEEE Transactions on Geoscience and Remote Sensing, 2008, vol. 46, no. 12, pp. 3987-4004. DOI: 10.1109/TGRS.2008.2000926.
Wong, B. S., Tui, C. G., Bai, W., Tan, P. H., Low, B. S., & Tan K. S. Thermographic Evaluation of Defects in Composite Materials. Non-Destructive Testing and Condition Monitoring, 1999, vol. 41, no. 8, p. 504.
Hrytsyk, V. V., & Zadorozhnyi, V. I. Doslidzhennya teoriyi zobrazhenʹ: poperednya obrobka – vydilennya krayiv [Research of image theory: preprocecion – edge detectors]. Prykladni pytannya matematychnoho modelyuvannya –Applied questions of mathematical modelling, 2023, no 1, pp. 20–29. DOI: 10.32782/mathematical-modelling/2023-6-1-2 (In Ukrainian).
Sedeeq, I. Image Forgery Detection Using Histogram-Oriented Gradients (HOG). Iraqi Journal of Science, 2025, vol. 66, no 5, pp. 2048-2058. DOI: 10.24996/ijs.2025.66.5.22.
Stankevych, S. A., Kondratov, O. M., Herda, M. I., Maslenko, O. V., & Saprykin, Ye. Yu. Iteratyvne pokrashchennya infrachervonykh zobrazhenʹ u chastotniy oblasti [Iterative enhancement of infrared images in the frequency domain]. Visti vyshchykh uchbovykh zakladiv. Radioelektronika – Visnyk of Higher Educational Institutions. Radioelectronics, 2024, vol. 67, no 6, pp. 311-322. DOI: 10.20535/S0021347024070045. (In Ukrainian).
Li, H., Wang, S., Li, S., Wang, H., Wen, S., & Li, F. Thermal Infrared-Image-Enhancement Algorithm Based on Multi-Scale Guided Filtering. Fire. 2024, vol. 7, iss. 6, article no. 192. DOI: 10.3390/fire7060192.
Gagnon, M.-A., Lagueux, P., Gagnon, J.-P., Savary, S., Tremblay, P., Farley, V., Guyot, E., & Chamberland, M. Airborne Thermal Infrared Hyperspectral Imaging of Buried Objects. SPIE Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX, Baltimore, 2015, vol. 9454, article no. 94540K. DOI: 10.1117/12.2177182.
Zhang, X., Liu, C., Chen, R., Zeng, B., Xiong, H., Wang, K., & Zhao, S. Improvement of Temperature and Emissivity Separation Algorithm for Thermal Infrared Hyperspectral Imaging Based on Airborne Data. IEEE Transactions on Geoscience and Remote Sensing. 2024, vol. 63, pp. 1-15. DOI: 10.1109/TGRS.2024.3520865.
Deniz, M., Seçkin, M., Gençer, Ç. & Koç, D. Infrared Thermography Image Based Classification of Soil Dirt and Fabric. International Journal of 3D Printing Technologies and Digital Industry. 2023, vol. 7, iss. 3, pp. 441-455. DOI: 10.46519/ij3dptdi.1339049.
Wu, X., Hong, D., & Chanussot, J. UIU-Net: U-Net in U-Net for Infrared Small Object Detection. IEEE Transactions on Image Processing. 2023, vol. 32, pp. 364–376. DOI: 10.1109/TIP.2022.3228497.
Melnyk, S. I., Petrychenko, H. I., & Tuluzov, I. H. Metrolohichni aspekty vymiryuvanʹ u zadachakh teplovoyi tomohrafiyi [Metrological aspects of measurements in thermal tomography problems]. Metrolohiya ta prylady – Metrology and Instruments, 2017, vol. 67, no 5, pp. 38–47. (In Ukrainian).
Melnyk, S., Petrychenko, H., & Tuluzov, I. Novi metody teplovoyi tomohrafiyi, a takozh filʹtratsiyi teploviziynykh zobrazhenʹ [New methods of thermal tomography and filtering of thermographic images]. Vymiryuvalʹna tekhnika ta metrolohiya – Measurement Technology and Metrology, 2016, vol. 77, pp. 48–57. (In Ukrainian).
Ledwon, D., Sage, A., Juszczyk, J. & Badura, P. Tomographic reconstruction from planar thermal imaging using convolutional neural network. Scientific Reports, 2022, vol. 12, article no. no. 2347. DOI: 10.1038/s41598-022-06076-z.
Melnyk, S. I., Diakoniuk, L., Kukharskyi, V., & Savula, Ya. Matematychne modelyuvannya protsesiv teploprovidnosti u bahatosharovykh seredovyshchakh iz tonkymy vklyuchennyamy [Mathematical Modeling of Heat Conduction Processes in Multilayer Media with Thin Inclusions]. Matematychni problemy mekhaniky neodnoridnykh struktur – Mathematical Problems of the Mechanics of Inhomogeneous Structures, 2000, vol. 1, pp. 212–215. (In Ukrainian).
Melnyk, S. I., Melnyk, S. S., & Tuluzov, I. G. Method of projection dynamic thermal tomography (PDTT). 11 International Conference on Quantitative Infrared Thermography: QIRT-2012, Naples, 2012, pp. 1-6. DOI: 10.21611/qirt.2012.308.
DOI: https://doi.org/10.32620/aktt.2025.5.06
