Development of models and methods for constructing multidimensional didactic instruments

Serhiy Dotsenko, Karyna Trubchaninova, Dmytro Nor, Olga Morozova

Abstract


The subject of the study in this article is the synthesis of multifactorial, predominantly eight-factor graphical logical-semantic models for knowledge representation with an open architecture for knowledge bases. The aim is to provide a theoretical description of the stages in developing these models and practical recommendations for their design. Tasks include: analyzing fundamental theoretical and practical principles of didactic multidimensional technology and characteristics of existing multifactorial logical-semantic knowledge representation models, identifying their strengths and weaknesses; defining the research methodology; analyzing theoretical principles for creating multifactorial logical-semantic knowledge representation models and identifying issues requiring solution; examining characteristics of didactic multidimensional instrumental models; researching eight-factor architectures of logical-semantic knowledge representation models; developing a method for designing logical-semantic knowledge representation models; advancing the method for forming two-factor logical-semantic knowledge representation models; practically implementing the logical-semantic physical (first level) knowledge representation model for multifactorial models; and summarizing research results and outlining future research directions in the field of modeling knowledge for open-architecture knowledge bases. The following results were obtained: Analysis of the literature sources indicates that current information technology implementations mainly focus on artificial intelligence-based tools, such as databases and knowledge bases. However, alternative principles for forming knowledge representation models have also been developed. Conclusions. The scientific novelty of the obtained results lies in the following: establishing the practicality of transitioning from matrices to a tabular form for representing inter-factor (vector) relationships between set elements as a Cartesian product; proposing the use of spreadsheet editors such as Microsoft Excel to form multivector logical-semantic knowledge representation models with any number of factors; determining that the use Microsoft Excel facilitates the implementation of the second and third stages of knowledge base design in the following forms: logical-semantic physical (first level) knowledge representation model; forming logical-semantic physical (second level) knowledge representation model. Additionally, Microsoft Excel supports the administration and management processes for the established knowledge base. However, defining the forms of relationship between elements for Cartesian product operations remains necessary. This issue requires further research and may be the subject of subsequent studies.

Keywords


logical model of knowledge representation; logical-semantic model of knowledge representation; open architecture knowledge base; semiotics; tabular representation; factor

Full Text:

PDF

References


Krogerus, M. & Tschäppeler, R. 50 Erfolgsmodelle. Kleines Handbuch für strategische Entscheidungen, “Kein + Aber” Publ., 2008. Available at: https://www.amazon.com/50-Erfolgsmodelle-Handbuch-strategische-Entscheidungen/dp/3036955291#detailBullets_feature_div (accessed 28.05.2025) (In German).

Dotsenko, S. I. Teoretychni osnovy stvorennya intelektualʹnykh system kompʺyuternoyi pidtrymky rishenʹ pry upravlinni enerhozberezhennyam orhanizatsiy : dys. d-ra tekhn. nauk [Theoretical foundations of creating intelligent computer-based decision support systems for managing energy conservation in organizations: dissertation of Dr. Tech. Sciences]. Kharkivsʹkyy natsionalʹnyy tekhnichnyy universytet silʹsʹkoho hospodarstva imeni Petra Vasylenka, Kharkiv, 2017. 369 p. (In Ukrainian).

Dotsenko, S. I. Pryntsypy evrystychnoyi samoorhanizatsiyi protsesiv smyslovoho myslennya ta smyslovoyi diyalʹnosti v intelektualʹnykh systemakh [Principles of heuristic self-organization of processes of semantic thinking and semantic activity in intellectual systems]. In Intelektualʹni kibernetychni systemy: evolyutsiya pryntsypiv, teoriy ta bezpekovykh tekhnolohiy [Intellectual cybernetic systems: evolution of principles, theories and security technologies: collection of monographs]. Ministerstvo osvity i nauky Ukrayiny, Natsionalʹnyy aerokosmichnyy universytet im. M. Ye. Zhukovsʹkoho «KHAI», Kyiv “Vydavnytstvo “Yuston”, 2023, pp. 145–168. (In Ukrainian).

Boyko, N. I. Bahatovymirne podannya danykh dlya upravlinnya IT-proektamy [Multidimensional data representation for IT project management]. Visnyk Natsionalʹnoho universytetu "Lʹvivsʹka politekhnika". Seriya : Informatsiyni systemy ta merezhi – Bulletin of the National University "Lviv Polytechnic". Series: Information Systems and Networks, 2015, no. 814, pp. 387–394. Available at: http://nbuv.gov.ua/UJRN/VNULPICM_2015_814_38 (accessed 28.02.2025). (In Ukrainian).

Dotsenko, S. I., Trubchaninova, K. A., & Nor, D. I. Udoskonalennya metodiv formuvannya lohikosemantychnykh modeley podannya znanʹ na prykladi modeley stratehichnoho myslennya [Improvement of methods for forming logical-semantic models of knowledge representation using the example of strategic thinking models]. Informatsiyno-keruyuchi systemy na zaliznychnomu transporti – Information and control systems in railway transport, 2025, no. 1 (160), pp. 3–13. (In Ukrainian).

Knyazheva, I. A., Koycheva, T. I., Osypova, T. Yu., Bartyenyeva, I. O., Nozdrova, O. P., & Halitsan, O. A. Teoretyko-metodychni zasady proyektuvannya profesiynoho stanovlennya maybutnikh fakhivtsiv v umovakh universytet·sʹkoho prostoru. Pivdenno-ukrayinsʹkyy natsionalʹnyy pedahohichnyy universytet imeni K. D. Ushynsʹkoho, Odesa, Publ. Bondarenko M.O., 2024. 324 p. ISBN 978-617-8327-88-0. (In Ukrainian).

Slipukhina, I., Chernetskyi, I., & Andruszkiewicz, F. Instrumental Digital Didactics in modern pedagogy. International Journal of Pedagogy, Innovation and New Technologies, 2022, no. 9, pp. 73–83.

Koycheva, T. I., & Knyazheva, I. A. Tekhnolohiya vykorystannya dydaktychnykh bahatovymirnykh instrumentiv u profesiyniy pidhotovtsi maybutnikh vykladachiv [Technology of using didactic multidimensional tools in professional training of future teachers]. Nauka i osvita – Science and Education, 2017, no. 12, pp. 190-195. Available at: https://arxiv.org/abs/2408.04913. (accessed 12.10.2024)

Adorni, G., Brondo, D., & Vivanet, G. A formal instructional model based on Concept Maps. J. of E-Learning and Knowledge Society, 2009, vol. 5, iss. 3, pp. 33-43. Available at: https://ceur-ws.org/Vol-1334/idea2.pdf. (accessed 10.12.2024).

ISO/IEC 13250-2:2006 Information Technology - Topic Maps - Part 2: Data Model. Available at: https://www.iso.org/standard/40017.html (accessed 28.03.2025).

Travitzki, R., & Kelian, L. L. Open architecture curriculum: Towards an education committed to pluralist democracy. International Education Journal, 2019, vol. 18, iss. 1, pp. 93-110. Available at: https://www.researchgate.net/publication/333261275_Open_architecture_curriculum_Towards_an_education_committed_to_pluralist_democracy (accessed 28.03.2025).

Hayna, H. A. Osnovy proektuvannya baz danykh [Fundamentals of database design]. Kyiv, Publ. KNUBA, 2005. 204 с. (In Ukrainian).

Różycki, R., Wojnicki, I., & Gajdzik, B. A Multi-Layer Fuzzy Ontology System for Knowledge Representation in Industry 4.0. Information, 2021, vol. 12, iss. 1, article no. 43. DOI: 10.3390/info12010043.

Barile, S., Saviano, M., & Iandolo, F. Cyber-Physical Systems, Decision-Making and Knowledge Management: A Systems Thinking Perspective. Information, 2021, vol. 12, iss. 1, article no. 40. DOI: 10.3390/info12010040.

Dell’Anna, A., Iacob, M. E., & Quartel, D. Semantic Interoperability in Knowledge-Based Systems Using Agent-Oriented Ontologies. Applied Sciences, 2022, vol. 12, iss. 6, article no. 3067. DOI: 10.3390/app12063067.

Qing, Li, & Guanzhong, Wu. Explainable reasoning over temporal knowledge graphs by pre-trained language model. Information Processing & Management, 2025, vol. 62, iss. 1, article no. 103903. DOI: 10.1016/j.ipm.2024.103903.

Qinyu, Li, Wang, H., & Xiaokai, Yi. Learning topic emotion and logical semantic for video paragraph captioning. Displays, 2024, vol. 83, article no. 102706. DOI: 10.1016/j.displa.2024.102706.

Yuan, J., Zhai, K., Li, H., & Yuan, M. Research on the construction and mapping model of knowledge organization system driven by standards. Computer Standards & Interfaces, 2025, vol. 92, article no. 103905. DOI: https://doi.org/10.1016/j.csi.2024.103905.




DOI: https://doi.org/10.32620/aktt.2025.5.05