Influence of stiffener parameters on the vibrational characteristics of 3D-printed honeycomb beams made of PLA
Abstract
Keywords
Full Text:
PDF (Українська)References
Gebrehiwot, B., Bandyopadhyay, S. Strength of PLA Components Fabricated with Fused Filament Fabrication Process. Polymers, 2021, vol. 13(9), pp. 1398. doi: 10.3390/polym13091398.
Kuznetsov, V., Solonin, A., Tavitov, A., Urzhumtsev, O., & Vakulik, A. Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyping Journal, 2020, vol. 26(3), pp. 495–503. doi: 10.1108/RPJ-01-2019-0017.
Kang, K., Park, J., Lee, C., & et al. The influence of stiffener geometry on flexural behavior of 3D printed PLA structures. Materials Today Communications, 2020, vol. 25, article no. 101651. doi: 10.1016/j.mtcomm.2020.101651.
Ngo, T. D., Kashani, A., Imbalzano, G., & et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B, 2018, vol. 143, pp. 172–196. doi: 10.1016/j.compositesb.2018.02.012.
Torrado, A. R., Shemelya, C. M., English, J. D. et al. Characterizing the mechanical properties of parts fabricated using fused deposition modeling additive manufacturing technology. Journal of Manufacturing Science and Engineering, 2015, vol. 137(1), article no. 011011. doi: 10.1115/1.4028725.
Bikas, H., Stavropoulos, P., & Chryssolouris, G. Additive manufacturing methods and modelling approaches: a critical review. International Journal of Advanced Manufacturing Technology, 2016, vol. 83, pp. 389–405. doi: 10.1007/s00170-015-7576-2.
Dizon, J. R. C., Espera, A. H., Chen, Q., & et al. Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 2018, vol. 20, pp. 44–67. doi: 10.1016/j.addma.2017.12.002.
ASTM D638–14 Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA, USA, 2014. doi: 10.1520/D0638-14.
Popescu, D., Zapciu, A., Amza, C., & et al. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 2018, vol. 69, pp. 157–166. doi: 10.1016/ j.polymertesting.2018.05.020.
Yang, T., Chen, X., Zhao, J., & et al. Design and analysis of lightweight lattice structures for additive manufacturing. Materials & Design, 2019, vol. 183, article no. 108137. doi: 10.1016/j.matdes.2019. 108137.
Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advanced Manufacturing, 2015, vol. 3(1), pp. 42–53. doi: 10.1007/s40436-014-0097-7.
Carneiro, O. S., Silva, A. F., & Gomes, R. Fused deposition modeling with polypropylene. Materials & Design, 2015, vol. 83, pp. 768–776. doi: 10.1016/j.matdes.2015.06.053.
Senthamaraikannan, C., ParthaaSarathy, B., Surya, S., Tharun Rajan, S. Study on the free vibration analysis and mechanical behaviour of 3D printed composite I shaped beams made up of short carbon fiber reinforced ABS and PLA materials. Materials Today: Proceedings. 2023. doi: 10.1016/j.matpr. 2023.07.141.
Gebrehiwot, S. Z., Espinosa Leal, L., Eickhoff, J. N., & Rechenberg, L. The influence of stiffener geometry on flexural properties of 3D printed polylactic acid (PLA) beams. Progress in Additive Manufacturing, 2021, vol. 6, pp. 71–81. doi: 10.1007 /s40964-020-00146-2.
Yadav, P. K., Abhishek, K., Singh, K., & Bhaskar, J. Effect of Infill Percentage on Vibration Characteristic of 3D-Printed Structure. Advances in Manufacturing and Industrial Engineering, 2021 doi: 10.1007/978-981-15-8542-5_49.
Maqsood, N., & Rimasauskas, M. Characterization of Carbon Fiber Reinforced PLA Composites Manufactured by Fused Deposition Modeling. Composites Part C: Open Access, 2021 doi: 10.1016/j.jcomc.2021.100112.
Bambu Lab. Technical Data Sheet V3.0 – PLA Matte, 2025. Available at: https://bambulab.com (Accessed 17 May 2025).
Anderson, I. Mechanical properties of 3D printed polymers: a comparative study of materials and infill. 3D Printing and Additive Manufacturing, 2017, vol. 4(3), pp. 123–134. doi: 10.1089/ 3dp.2016.0054.
Tkach, M., Zolotoy, Y., Halynkin, Y., Proskurin, A., Zhuk, I., Kluchnyk, V., & Bobylev. I. Improving the Noise Immunity of the Measuring and Computing Coherent-Optical Vibrodiagnostic. Integrated Computer Technologies in Mechanical Engineering – 2020. Lecture Notes in Networks and Systems, 2021, vol. 188, pp. 277–289. Cham: Springer. doi: 10.1007/978-3-030-66717-7_23.
Tkach, M. R., Zolotiy, Y. G., Dovgan, D. V., & Guk, I. Y. Sposib vyznachennya chastot i form rezonansnykh kolyvan lopatok GTD metodom spekl-interferometriyi [Method of determining of forms of resonant vibrations shapes of blades of gas turbine engine by speckle interferogram]. Patent UA No. 103068, 2015. (In Ukrainian).
Tkach, M., Morhun, S., Zolotoy, Y., & Zhuk, I. Modal analysis of the axial compressor blade: advanced time-dependent electronic interferometry and finite element method. International Journal of Turbo Jet-Engines, 2020, Published ahead of print. doi: 10.1515/tjj-2020-0014.
Pridorozhnyj, R. P., Sheremet'ev, A. V., & Zinkovskij, A. P. Vliyanie polzuchesti materiala na rabotosposobnost' lopatok soplovogo apparata turbiny vysokogo davleniya [Influence of creep of material of a high pressure nozzlevanes on their operability]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 7 (167), pp. 41–46. doi: 10.32620/aktt.2020.7.06. (in Russian).
Vorobyev, Y. S., Chugai, M. A., Romanenko, V. N., Kulishov, S. B., & Skritskyi, A. N. Analiz kolebanij lopatochnogo apparata GTD s monokristallicheskimi lopatkami [Experimental and calculation determination of the mechanical properties of the material of GTE blades]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 4supl1, pp. 47–50. doi: 10.32620/aktt.2021.4sup1.12. (in Russian).
DOI: https://doi.org/10.32620/aktt.2025.4sup2.12