Review of numerical methods for modelling temperature separation in swirling fluid flows

Artem Karpenko

Abstract


The main objective of this paper is to present a generalized review of the methods used for the numerical analysis of the total temperature flow separation process in Ranque-Hilsch vortex tubes using computational fluid dynamics (CFD). The main attention is paid to the studies supported by experimental data and evaluated by the authors as being in good agreement with the experimental results. This publication provides a brief introduction to the subject matter, followed by a short retrospective of previous efforts and related challenges. The general trends in the numerical analysis of vortex tubes are presented. The conclusions are developed on the basis of the most recent and previously published results of numerical studies. Researchers studying flows in vortex tubes typically use axisymmetric models in both three- and two-dimensional dimensions. However, the authors have repeatedly concluded that none of the available turbulence models can accurately represent the complex fluid dynamics inside a vortex tube. Despite this, the standard k-ε turbulence model is often successfully used to simulate turbulent phenomena and can be considered a basic model for evaluating the characteristics of vortex tubes. Although this model is not without its drawbacks, it can be used to obtain a fairly accurate generalized picture of the distribution of key parameters with satisfactory accuracy and without the need for additional model calibration. Most of the considered turbulence models underestimate (to varying degrees in each individual case) the level of total temperature separation in a Ranque-Hilsch vortex tube. The accuracy of temperature separation calculations can be improved by using more complex models, such as LES vortex-resolving models. However, these models are not an everyday tool for design engineers due to their demanding computational resources and the time required for calculations.For complete and reliable modeling of flow in a vortex tube, a more accurate (than existing) turbulence model is still needed today.


Keywords


vortex tube; energy separation; total temperature separation; vortex effect; Ranque-Hilsch effect; CFD; turbulence model

References


Ranque, G. J. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air. Le journal de Physique et le Radium (Paris), 1933, no. 4, pp. 112–114.

Ranque, G. J. Method and apparatus for obtaining from a fluid under pressure two outputs of fluid at different temperatures. US Patent, US1952281A, 1934.

Strakhovich, K. I. Prikladnaia gazodinamika. Moscow: ONTI, 1937, vol. 1. 168 p.

Eckert, E., & Weise, W. Messungen der Temperaturverteilung auf der Oberfläche schnell angeströmter unbeheizter Körper. Forschung auf dem Gebiete des Ingenieurwesens, 1942, vol. 13, no. 6, pp. 246–254. doi: bf0258534310.1007

Sprenger, H. Ueber thermische effekte bei reseonanzrohren. Mitt Inst Aerodyn, ETH, 1954, vol. 21, pp. 18–35.

Goldstein, R. J., Behbahani, A. I., & Kieger Heppelmann, K. K. Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet. International journal of heat and mass transfer, 1986, vol. 29, no. 8, pp. 1227–1235. doi: 10.1016/0017-9310(86)90155-9.

Carscallen, W. E., Currie, T. C., Hogg, S. I., & Gostelow, J. P. Measurement and computation of energy separation in the vortical wake flow of a turbine nozzle cascade. Journal of turbomachinery, 1999, vol. 121, no. 4, pp. 703–708. doi: 10.1115/1.2836723.

Deich, M. E. Tekchnicheskaia gazodinamika. Moscow: Gosenergoizdat Publ., 1961, pp. 197-198.

Eckert, E. R. G. Energy separation in fluid streams. International communications in heat and mass transfer, 1986, vol. 13, iss. 2, pp. 127–143. doi: 1933(86)90053-9073510.1016.

Eckert, E. R. G. Cross transport of energy in fluid streams. Wärme- und Stoffübertragung, 1987, vol. 21, no. 2-3, pp. 73–81. doi: bf0137756210.1007.

Eiamsa-ard, S., & Promvonge, P. Review of Ranque–Hilsch effects in vortex tubes. Renewable and sustainable energy reviews, 2008, vol. 12, no. 7, pp. 1822–1842. doi: j.rser.2007.03.006.

Xue, Y., Arjomandi, M., & Kelso, R. Energy analysis within a vortex tube. Experimental thermal and fluid science, 2014, vol. 52, pp. 139-145. doi: j.expthermflusci.2013.09.004.

Secchiaroli, A., Ricci, R., Montelpare, S., & D’Alessandro, V. Numerical simulation of turbulent flow in a Ranque–Hilsch vortex tube. International journal of heat and mass transfer, 2009, vol. 52, no. 23-24, pp. 5496–5511. doi: j.ijheatmasstransfer.2009.05.031

Eiamsa-ard, S., & Promvonge, P. Numerical investigation of the thermal separation in a Ranque–Hilsch vortex tube. International journal of heat and mass transfer, 2007, vol. 50, no. 5-6, pp. 821–832. doi: j.ijheatmasstransfer.2006.08.018

Rafiee, S. E., & Sadeghiazad, M. M. Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k–ɛ turbulence model. Applied thermal engineering, 2014, vol. 2, no. 1-2, pp. 65–74. doi: j.applthermaleng.2014.01.073.

Alekhin, V., Bianco, V., Khait, A., Noskov, A. Numerical investigation of a double-circuit Ranque–Hilsch vortex tube. International journal of thermal sciences, 2015, vol. 89, pp. 272–282. doi: j.ijthermalsci.2014.11.012.

Khait, A. V., Noskov, A. S., Lovtsov, A. V., Alekhin, V. N. Semi-empirical turbulence model for numerical simulation of swirled compressible flows observed in Ranque–Hilsch vortex tube. International journal of refrigeration, 2014, vol. 48, pp. 132–141. doi: j.ijrefrig.2014.01.074.

Bovand, M., Valipour, M. S., Eiamsa-ard, S., & Tamayol, A. Numerical analysis for curved vortex tube optimization. International Communications in Heat and Mass Transfer, 2014, vol. 50, pp. 98–107. doi: j.icheatmasstransfer.2013.11.012.

Bovand, M., Valipour, M. S., Dincer, K., & Tamayol, A. Numerical analysis of the curvature effects on Ranque–Hilsch vortex tube refrigerators. Applied Thermal Engineering, 2014, vol. 65, no. 1-2, pp. 176–183. doi: j.applthermaleng.2013.11.045.

Liu, X., & Liu, Z. Investigation of the energy separation effect and flow mechanism inside a vortex tube. Applied Thermal Engineering, 2014, vol. 67, no. 1-2, pp. 494–506. doi: j.applthermaleng.2014.03.071.

Mohammadi, S., & Farhadi, F. Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube. Separation and Purification Technology, 2014, vol. 138, pp. 177–185. doi: j.seppur.2014.10.022.

Bej, N., & Sinhamahapatra, K. P. Exergy analysis of a hot cascade type Ranque-Hilsch vortex tube using turbulence model. International Journal of Refrigeration, 2014, vol. 45, pp. 13–24. doi: j.ijrefrig.2014.05.020.

Kandil, H. A., & Abdelghany, S. T. Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube. Energy, 2015, vol. 84, pp. 207-218. doi: j.energy.2015.02.089.

Thakare, H. R., & Parekh, A. D. CFD analysis of energy separation of vortex tube employing different gases, turbulence models and discretisation schemes. International Journal of Heat and Mass Transfer, 2014, vol. 78, pp. 360–370. doi: j.ijheatmasstransfer.2014.06.083.

Pourmahmoud, N., Hassanzadeh, A., & Moutaby, O. Numerical analysis of the effect of helical nozzles gap on the cooling capacity of Ranque–Hilsch vortex tube. International Journal of Refrigeration, 2012, vol. 35, no. 5, pp. 1473–1483. doi: j.ijrefrig.2012.03.019.

Dutta, T., Sinhamahapatra, K. P., & Bandyopdhyay, S. S. Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube. International Journal of Refrigeration, 2010, vol. 33, no. 4, pp. 783–792. doi: j.ijrefrig.2009.12.014.

Matveev, K. I., & Leachman, J. Numerical investigation of vortex tubes with extended vortex chambers. International Journal of Refrigeration, 2019, vol. 108, pp. 145–153. doi: j.ijrefrig.2019.08.030.

Lyu, W., Jeong, M., & Park, C. Simulation-Based design for inlet nozzle of vortex tube to enhance energy separation effect. Applied Sciences, 2024, vol. 14, no. 21, p. 10023. doi: app14211002310.3390.

Dincer, K., Baskaya, S., Uysal, B. Z., & Ucgul, I. Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet. International Journal of Refrigeration, 2009, vol. 32, no. 1, pp. 87–94. doi: j.ijrefrig.2008.06.002.

Farouk, T., & Farouk, B. Large eddy simulations of the flow field and temperature separation in the Ranque–Hilsch vortex tube. International Journal of Heat and Mass Transfer, 2007, vol. 24, pp. 4724–4735. doi: j.ijheatmasstransfer.2007.03.048.

Devade, K. D. Augmentation of refrigeration effect of vortex tube. PhD Thesis, Shivaji University, Kolhapur, India, 2017.




DOI: https://doi.org/10.32620/aktt.2025.4sup1.14