Review of ejector nozzles.Part 1 – Thrust augmenting ejector nozzles

Ruslan Tsukanov, Sergiy Yepifanov

Abstract


The subject of this article is ejector nozzles, which are intended for the thrust augmentation of jet engines. The goal of this study is to analyze the contradictions between technical requirements and the requirements of manufacturability and price, between the required high characteristics of ejectors and compactness, and between the conflicting goals of achieving a high mixing rate with low losses of the total pressure of the primary flow within a short total length. Moreover, this study aims to identify methods for rationally reducing these contradictions by using effective mixers of the primary and secondary flows. The tasks to be solved are: development of a classification, revealing the advantages and drawbacks of thrust augmenting ejector nozzles, and analysis of the main directions in ejector nozzle research (theoretical research based on simplified models, experimental research using improved models, and research using computational fluid dynamics models). The following methods were used: search of corresponding information sources on the Internet and analysis based on operational experience in the aviation branch. The following results were obtained: in terms of information sources, the classification of thrust augmenting ejector nozzles was developed, their advantages and drawbacks were formulated, and the results of available research were analyzed. Investigations of thrust augmenting ejector nozzles for micro-turbojets were analyzed separately. Conclusions. The scientific novelty of the results obtained is as follows: 1) information from numerous sources of literature that clarifies classification features, advantages, and drawbacks of thrust augmenting ejector nozzles, development of these nozzles investigations by theoretical and experimental methods were collected; 2) a very limited number of publications and absence (in open-source literature) of methodology as for designing thrust augmenting ejector nozzles for micro-turbojet engines was discovered. Thus, the necessity of developing a design methodology for thrust augmenting ejector nozzles for micro-turbojets has been justified. The goal and challenges of the following research are outlined.

Keywords


gas-turbine engine; thrust augmenting ejector nozzle; thrust augmentation; entrainment ratio; primary nozzle; ejector mixing chamber

Full Text:

PDF

References


Schmidt, R., Hupfer, A., & Gümmer, V. Experimental and Numerical Investigation of Mixer Ejector Nozzles for Small Turbojet Engines. Proceeding of ISABE 2022, Ottawa, 25-30 September, 2022, pp. 1 14. Available at: https://www.researchgate.net/publication/ 372288860/ISABE_2021_036_full.pdf (accessed 28.02.2025).

Presz, W., Reynolds, G., & Hunter, C. Thrust Augmentation with Mixer/Ejector Systems. Proceeding of 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 14-17 January, 2002, pp. 1 10. Available at: https://ntrs.nasa.gov/api/citations/20030003827/downloads/20030003827.pdf (accessed 30.11.2023).

Georgi, J., & Staudacher, S. Characteristics Of Ejectors On Small Gas Turbine Engines. Deutscher Luft- und Raumfahrtkongress, 2013. pp. 1 7.

Presz, W. M., Gousy, R. G., Morin, B. L. Forced Mixer Lobes in Ejector Designs. Journal of Propulsion, 1988, vol. 4, iss. 4, pp. 350 355. DOI: 10.2514/3.23073.

Nagaraja, K. S. Some Ejector Characteristics. Proceeding of Aircraft Systems and Technology Conference, Dayton, OH, 11-13 August 1981, pp. 1 9. DOI: 10.2514/6.1981-1679.

Quinn, B. Compact Ejector Thrust Augmentation. Journal of Aircraft, 1973. vol. 10, no. 8, pp. 481-486. DOI: 10.2514/3.60251.

Porter, J. L., & Squyers, R. A. A Summary/Overview of Ejector Augmentor Theory and Performance: Phase II (Technical Report), Volume I – Technical Discussion. ATC Report No. R-91100/9CR-47A, 1979. 212 p. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA098620.pdf (accessed 06.01.2025).

Tillman, G., & Presz, W. Thrust Characteristics of a Supersonic Mixer Ejector. Proceeding of 15th AIAA Aeroacoustics Conference, Long Beach, 25 27 October, 1993. pp. 1 9. DOI: 10.2514/6.1993-4345.

Skebe, S. A., McCormick, D. C., & Presz, W. M. Parameter effects on mixer-ejector pumping performance. Proceeding of 26th AIAA Aerospace Sciences Meeting, Reno, 11 14 January, 1988, pp. 1 14. DOI: 10.2514/6.1988-188.

Bevilaqua, P. M. Evaluation of Hypermixing for Thrust Augmenting Ejectors. Journal of Aircraft, 1974, vol. 11, pp. 348 354. DOI: 10.2514/3.59257.

Presz, W. M., Gousy, R. G., & Morin, B. L. Forced Mixer Lobes in Ejector Designs. Proceeding of 22nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, 16 18 June, 1986, pp. 1 10. DOI: 10.2514/6.1986-1614.

Povinelli, L. A., & Anderson, B. H. Investigation of Mixing in a Turbofan Exhaust Duct, Part II: Computer Code Application and Verification. AIAA Journal, vol. 22, iss. 4, 1984, pp. 518-525. DOI: 10.2514/3.8433.

Chen, W., Chong, D. Yan, J., & Liu, J. The numerical analysis of the effect of geometrical factors on natural gas ejector performance. Applied Thermal Engineering, 2013, vol. 59, pp. 21 29. DOI: 10.1016/ j.applthermaleng.2013.04.036.

Sun, W., Ma, X., Zhang, Y., Jia, L., & Xue, H. Performance analysis and optimization of a steam ejector through streamlining of the primary nozzle. Case Studies in Thermal Engineering, 2021, vol. 27, pp. 1 13. DOI: 10.1016/J.CSITE.2021.101356.

Nwoye, F. C., Okoro, H., Okoronkwo, C., Nwaji, G., Nwufo, O., & Emmanuel, A. Changes in Primary Nozzle Contours and Ejector Performance — A Numerical Study. International Journal of Advantage Scientific Engineering, 2024, vol. 10, no.3 pp. 3495-3507. DOI: 10.29294/IJASE.10.3.2024.3495-3507.

Wang, L., Yan, J., Wang, C., & Li, X. Numerical study on optimization of ejector primary nozzle geometries. International Journal of Refrigeration. 2017, vol. 76, pp. 219–229. DOI: 10.1016/j.ijrefrig.2017.02.010.

Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. Numerical and experimental investigations on supersonic ejectors. Int. J. Heat Fluid Flow 2005, vol. 26, pp. 56–70.

Pradeep, G., Srisha, M. V. R., & Pramod, K. Numerical Analysis of Ejector Performance Near the Critical Back Pressure. Proceeding of the 6th National Symposium on Shock Waves — IITM (NSSW 2020), 2020, pp. 1 6. Available at: https://www.researchgate.net/publication/344507428_Numerical_Analysis_of_Ejector_Performance_Near_the_Critical_Back_Pressure#fullTextFileContent (accessed 25.01.2025).

Arun, K. R., & Rajesh, G. Physics of vacuum generation in zero-secondary flow ejectors. Physics of Fluids. 2018, vol. 30, iss. 6, pp. 1-41. DOI: 10.1063/1.5030073.

Heiser, W. H. Ejector Thrust Augmentation. Journal of Propulsion and Power, 2010, vol. 26, no. 6, pp. 1325–1329. DOI: 10.2514/1.50144.

Khalid, S., Sokhey, J., Chakka, P., & Pierluissi, A. Ejector/Engine/Nacelle Integration for Increased Thrust minus Drag. Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, USA, 25–28 July 2010. pp. 1 11. DOI: 10.2514/6.2010-6501.

Mikkelsen, C. D., & Sandberg, M. R., & Addy, A. L. Theoretical and Experimental Analysis of the Constant-Area, Supersonic-Supersonic Ejector. University of Illinois Report UILU ENG 76 4003, 1976. 296 p. Available at: https://apps.dtic.mil/sti/pdfs/ADA033615.pdf (accessed 25.01.2025).

Karthick, S. K., Rao, S. M. V., Jagadeesh, G., & Reddy, K. P. J. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector. Physics of Fluids, 2016, no. 28, pp. 1 26. DOI: 10.1063/1.4954669.

Qubbaj, A. R. An Experimental and Numerical Study of Gas Jet Diffusion Flames Enveloped by a Cascade of Venturis. A Dissertation of Doctor of Philosophy. 1998. Oklahoma. 276 p. Available at: https://research-solution.com/uplode/book/book-89494.pdf?pdf (accessed 25.01.2024).

Jacobs, E. N., & Shoemaker, J. M. Tests on Thrust Augmentors for Jet Propulsion: NACA TN 431, 1932. 9 p. Available at: https://digital.library.unt.edu/ark:/67531/metadc54078/m2/1/high_res_d/19930081190.pdf (accessed 30.01.2025).

Jones, C. N. The Effect of Secondary Flow Velocity Profile on the Static Performance of Low Speed Ejector Thrust Augmenters. The Aeronautical Journal, 1975. vol. 79, article no. 779, pp. 510 517, DOI: 10.1017/S0001924000036149.

Karman, T. Theoretical Remarks on Thrust Augmentation. Reissner Anniversary Volume: Contribution to Applied Mechanics, 1st ed., W. Edwards, Ann Arbor, Michigan, 1949, pp. 461–468.

Cican, G., Frigioescu, T.-F., Crunteanu, D.-E., & Cristea, L. Micro Turbojet Engine Nozzle Ejector Impact on the Acoustic Emission, Thrust Force and Fuel Consumption Analysis. Aerospace, 2023, no.10, iss. 2, article no. 162, pp. 1 19. DOI: 10.3390/aerospace10020162.

Hi, Y., Shi, X., & Ji, H. Optimal Design of Ejector Nozzle Profile with Internal and External Integrated Flow. Aerospace, 2024, vol. 11, iss. 184, pp. 1 17. DOI: 10.3390/aerospace11030184.

Schmidt, R., & Hupfer, A. Design and numerical simulation of ejector nozzles for very small turbojet engines. CEAS Aeronautical Journal, 2021, no. 12, pp. 923–940. DOI: 10.1007/s13272-021-00537-3.

Keenan, J. H., & Neumann, E. P. A simple air ejector. ASME Journal of Applied Mechanics, 1942, vol. 9(2), pp. 75–81. DOI: 10.1115/1.4009187.

Morrisson, R. Jet Ejectors and Augmentation. NACA and Aeronautical Research Committee report ARC 6428, 1942. 40 p. Available at: https://books.google.com.ua/books?id=9XX4xwEACAAJ (accessed 24.01.2025).

Sanders, J. C., & Brightwell, V. L. Analysis of Ejector Thrust by Integration of Calculated Surface Pressures. TN 1958 NACA, 1949. 36 p. Available at: https://ntrs.nasa.gov/api/citations/19930082636/downloads/19930082636.pdf (accessed 24.01.2025).

Keenan, J. H., Neumann, E. P., & Lustwerk, F. An Investigation of Ejector Design by Analysis and Experiment. Journal of Applied Mechanics, 1950, vol. 17, no. 3, pp. 299–309. DOI: 10.1115/1.4010131.

Kochendorfer, F. D., & Rousso, M. D. Performance Characteristics of Aircraft Cooling Ejectors Having Short Cylindrical Shrouds: Research memorandum NACA RM E51E01, 1951. 40 p. Available at: https://core.ac.uk/download/pdf/42799559.pdf (accessed 08.01.2025).

Kochendorfer, F. D. Note on performance of aircraft ejector nozzles at high secondary flows: Research memorandum NASA RM E54F17a, 1954. 21 p. Available at: https://ntrs.nasa.gov/api/citations/ 19930088271/downloads/19930088271.pdf. (accessed 08.01.2025).

Szczeniowski, B. Theory of the Jet Syphon. TN 3385 NACA, 1955. 50 p. Available at: https://ntrs.nasa.gov/api/citations/19930084068/downloads/19930084068.pdf (accessed 24.01.2025).

Reid, J. The Effect of a Cylindrical Shroud on the Performance of a Stationary Convergent Nozzle, R. & M. No. 3320, Aeronautical Research Council, London, Britain, January 1962.

Bernstein, A., Heiser, W., & Hevenor, C. Compound-Compressible Nozzle Flow. Proceeding of 2nd Propulsion Joint Specialist Conference, Colorado Springs. 13 17 June, 1966. pp. 1 18. DOI: 10.2514/6.1966-663.

Huang, K. P., & Kisielowski, E. An Investigation of the Thrust Augmentation Characteristics of Jet Ejectors. USAAVLABS Technical Report 67-8, 1967. 215 p. Available at: https://apps.dtic.mil/sti/tr/ pdf/AD0651946.pdf (accessed 08.01.2025).

Viets, H. Thrust Augmenting Ejectors: Aerospace Research Laboratories Report ARL75 0224, 1975. 196 p. Available at: https://apps.dtic.mil/sti/tr/ pdf/ADA017782.pdf. (accessed 08.01.2025).

Viets, H. Thrust augmenting ejector analogy. Journal of Aircraft. 1977. vol. 14, no. 4, pp. 409–411. DOI: 10.2514/3.44603.

Nagaraja, K. S. Recent Development in Ejector Technology in the Air Force: an Overview. Proceeding of NASA Conference Publication 2093. Workshop on Thrust Augmentation Ejectors. Dayton, 28-29 June, 1978, pp. 1 22. Available at: https://ntrs.nasa.gov/api/citations/19800001868/downloads/19800001868.pdf (accessed 25.01.2025).

Porter, J. L. Squyers, R. A., & Nagaraja, K. S. An Overview of Ejector Theory. Proceeding of AIAA Aircraft Systems and Technology Conference, Dayton, Ohio, 11 13 August, 1981, pp. 1 17. DOI: 10.2514/6.1981-1678.

Alperin, M., & Wu, J. J. Thrust Augmenting Ejectors. Proceedings: Ejector Workshop for Aerospace Applications, AFWAL-TR-82-3059, June 1982, pp. 281-330. Available at: https://apps.dtic.mil/sti/tr/ pdf/ADP000513.pdf (accessed 28.02.2025).

Alperin, M., & Wu, J.-J. Thrust augmenting ejectors Part I. AIAA J., 1983, vol. 21, iss. 10, pp. 1428–1436. DOI: 10.2514/3.60148.

Alperin, M., & Wu, J.-J. Thrust augmenting ejectors Part II. AIAA J., 1983, vol. 21, iss. 12, pp. 1698–1706. DOI: 10.2514/3.8312.

Presz, W. M., & Greitzer, E. M. A Useful Similarity Principle for Jet Engine Exhaust System Performance. Proceeding of 24nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, Massachusetts, 11-13 July, 1988, pp. 1 10. DOI: 10.2514/6.1988-3001.

Presz, W. M. Mixer/Ejector Noise Suppressors. Proceeding of 27th Joint Propulsion Conference, Sacramento, 24-26 June, 1991, pp. 1 10. DOI: 10.2514/6.1991-2243.

Manganiello, E. J. A Preliminary Investigation of Exhaust-Gas Ejectors for Ground Cooling. Wartime Report NACA ACR July 1942. 1942. 28 p. Available at: https://ntrs.nasa.gov/api/citations/19930093264/downloads/19930093264.pdf (accessed 25.01.2025).

Huddleston, S. C., Wilsted, H. D., & Ellis, C. W. Performance of Several Air Ejectors with Conical Mixing Sections and Small Secondary Flow Rates: Research memorandum NACA RM E8D23, 1948. 76 p. Available at: https://ntrs.nasa.gov/api/citations/ 19930085446/downloads/19930085446.pdf (accessed 28.02.2025).

Ellis, C. W., Hollister, D. P., & Sargent, A. F. Preliminary Investigation of Cooling-Air Ejector Performance at Pressure Ratios from 1 to 10: Research memorandum NACA RM E51H21, 1951. 23 p. Available at: https://ntrs.nasa.gov/api/citations/19930086851/ downloads/19930086851.pdf (accessed 28.02.2025).

Lewis, E., Wallner, & Emmert, T. Jansen Full-Scale Investigation of Cooling Shroud and Ejector Nozzle for a Turbojet Engine – Afterburner Installation: Research memorandum NASA RM E51J04, 1951. 43 p. Available at: https://ntrs.nasa.gov/api/citations/ 19930088192/downloads/19930088192.pdf (accessed 24.12.2024).

Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. 1 – Diameter Ratios of 1.21 and 1.10. Research memorandum NACA RM E52E21, 1952. 26 p. Available at: https://ntrs.nasa.gov/api/ citations/19930087173/downloads/19930087173.pdf |(accessed 25.01.2025).

Greathouse, W. K., & Hollister, D. P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. I1 – Diameter Ratios of 1.06 and 1.40. Research memorandum NACA RM E52F26, 1952. 37 p. Available at: https://ntrs.nasa.gov/api/ citations/20040040338/downloads/20040040338.pdf (accessed 25.01.2025).

Huntley, S. C., & Yanowitz, H. Pumping and Thrust Characteristics of Several Divergent Cooling-Air Ejectors and Comparison of Performance with Conical and Cylindrical Ejectors: NACA RM E53J13, 1954. 45 p. Available at: https://ntrs.nasa.gov/api/citations/ 19930088256/downloads/19930088256.pdf (accessed 28.02.2025).

Greathouse, W. K. Preliminary Investigation of Pumping and Thrust Characteristics of Full-Size Cooling-Air Ejectors at Several Exhaust-Gas Temperatures. Research memorandum NACA RM E54A18, 1954. 131 p. Available at: https://ntrs.nasa.gov/api/ citations/19930088138/downloads/19930088138.pdf (accessed 25.01.2025).

Ciepluch, C. C., & Fenn, D. B. Experimental data for four full-scale conical cooling-air ejectors: Research memorandum NASA RM E54F02, 1954. 42 p. Available at: https://ntrs.nasa.gov/api/citations/19930088192/downloads/19930088192.pdf. (accessed 08.01.2025).

Greathouse, W. K., & Hollister, D. P. Air-Flow and Thrust Characteristics of Several Cylindrical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. Research memorandum NACA RM E52L24, 1953. 83 p. Available at: https://ntrs.nasa.gov/api/citations/19930087598/downloads/19930087598.pdf (accessed 25.01.2025).

Kochendorfer, F. D. Effect of Properties of Primary Fluid on Performance of Cylindrical Shroud Ejectors: Research memorandum NACA RM E53L24a, 1954. 33 p. Available at: https://ntrs.nasa.gov/api/citations/19930088053/downloads/19930088053.pdf (accessed 28.02.2025).

Fabri, J., & Paulon, J. Theory and Experiments on Supersonic Air-to-Air Ejectors. Technical memorandum NACA TM-1410, 1958. 31 p. Available at: https://ntrs.nasa.gov/api/citations/19930090911/downloads/19930090911.pdf (accessed 08.01.2025).

Reid, J. An Experiment on Aerodynamic Nozzles at M=2. Aeronautical Research Council Reports and Memoranda No. 3382, 1964. 39 p. Available at: https://reports.aerade.cranfield.ac.uk/bitstream/handle/1826.2/3963/arc-rm-3382.pdf?sequence=1&isAllowed=y (accessed 25.01.2025).

Samanich, N. E., & Huntley, S. C. Thrust and Pumping Characteristics of Cylindrical Ejectors Using Afterburning Turbojet Gas Generator: NASA TM X-52565, 1969. 94 p. Available at: https://ntrs.nasa.gov/api/citations/19730023889/downloads/19730023889.pdf (accessed 28.02.25).

Ellis, C. W., Hollister, D. P., & Wilsted, H. D. Investigation of Performance of Several Double-Shroud Ejectors and Effect of Variable-Area Exhaust Nozzle on Ejector Performance: Research memorandum NACA RM E52D25, 1952. 28 p. Available at: https://ntrs.nasa.gov/api/citations/19930086983/downloads/19930086983.pdf (accessed 28.02.2025).

Reshotko, E. Performance Characteristics of a Double-Cylindrical-Shroud Ejector Nozzle: Research memorandum NACA RM E53H28, 1953. 59 p. Available at: https://ntrs.nasa.gov/api/citations/19930088057/downloads/19930088057.pdf (accessed 28.02.2025).

Greathouse, W. K., & Beale, W. T. Performance Characteristics of Several Divergent-Shroud Aircraft Ejectors: Research memorandum NASA RM E55G21a, 1955. 46 p. Available at: https://ntrs.nasa.gov/api/citations/19930088874/downloads/19930088874.pdf (accessed 08.01.2025).

Shillito, T. B., Hearth, D. P., Edgar, M., & Cortright, J. Exhaust Nozzles for Supersonic Flight with Turbojet Engines, Research memorandum NACA RM E56A18, 1956. 19 p. Available at: https://ntrs.nasa.gov/api/citations/20090024829/downloads/20090024829.pdf (accessed 08.01.2025).

Beke, A., & Simon, P. C. Thrust and Drag Characteristics of Simulated Variable-Shroud Nozzles with Hot and Cold Primary Flows at Subsonic and Supersonic Speeds: Research memorandum NACA RM E54J26, 1955. 31 p. Available at: https://ntrs.nasa.gov/api/citations/19930088467/downloads/19930088467.pdf (accessed 28.02.2025).

Stitt, L. E., & Valerino, A. S. Effect of Free-Stream Mach Number on Gross-Foroe and Pumping Characteristics of Several Ejectors. Research memorandum NACA RM E54K23a, 1955. 38 p. Available at: https://ntrs.nasa.gov/api/citations/19930088528/downloads/19930088528.pdf (accessed 25.01.2025).

Steffen, F. W., & Jones, J. R. Performance of a Wind Tunnel Model of an Aerodynamically Positioned Variable Flap Ejector at Mach Numbers From 0 to 2.0. NASA TM X-1639, 1968. 38 p. Available at: https://ntrs.nasa.gov/api/citations/19680021127/downloads/19680021127.pdf (accessed 28.02.25).

Shrewsbury, G. D., & Jones, J. R. Static Performance of an Auxiliary Inlet Ejector Nozzle for Supersonic Cruise Aircraft: NASA TM X-1653, 1968. 42 p. Available at: https://ntrs.nasa.gov/api/citations/19680026292/downloads/19680026292.pdf (accessed 28.02.25).

Bresnahan, D. L. Performance of an Aerodynamically Positioned Auxiliary Inlet Ejector Nozzle at Mach Numbers From 0 to 2.0. NASA TM X-2023, 1970. 51 p. Available at: https://ntrs.nasa.gov/api/citations/19700018654/downloads/19700018654.pdf (accessed 28.02.25).

Samanich, N. E., & Burley, R. R. Flight Performance of Auxiliary Inlet Ejector and Plug Nozzle at Transonic Speeds. Technical Paper NASA TM-52784, 1970. 15 p. Available at: https://ntrs.nasa.gov/api/citations/19700016380/downloads/19700016380.pdf (accessed 28.02.2025).

Allen, J. L. Pumping Characteristics for Several Simulated Variable-Geometry Ejectors with Hot and Cold Primary Flow: Research memorandum NACA RM E54G15, 1954. 26 p. Available at: https://ntrs.nasa.gov/api/citations/19630002650/downloads/19630002650.pdf (accessed 28.02.2025).

Vargo, D. J. Effects of Secondary-Air Flow on Annular Base Force of a Supersonic Airplane: Research memorandum NACA RM E54G28, 1954. 31 p. Available at: https://ntrs.nasa.gov/api/citations/19630002649/downloads/19630002649.pdf (accessed 28.02.2025).

Hearth, D. P., & Valerino, A. S. Thrust and Pumping Characteristics of a Series of Ejector-Type Exhaust Nozzles at Subsonic and Supersonic Flight Speeds. Research memorandum NACA RM E54H19, 1954. 37 p. Available at: https://ntrs.nasa.gov/api/citations/19630002630/downloads/19630002630.pdf (accessed 25.01.2025).

Salmi, R. J. Experimental Investigation of Drag of Afterbodies with Exiting Jet at High Subsonic Mach Numbers. Research memorandum NACA RM E54I13, 1954. 30 p. Available at: https://ntrs.nasa.gov/api/citations/19930088483/downloads/19930088483.pdf (accessed 25.01.2025).

Bernal, L., & Sarohia, V. Entrainment and Mixing in Thrust Augmenting Ejectors. Interim Report AFOSR TR 1008. 1982. 102 p. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA121637.pdf (accessed 25.01.2025).

Bernal, L., & Sarohia, V. An Experimental Investigation of Two-Dimensional Thrust Augmenting Ejectors. Final Report, Part I. AFOSR TR 85 0371, 1984. 104 p. Available at: https://apps.dtic.mil/sti/tr/pdf/ADA154104.pdf (accessed 25.01.2025).

Internal Aerodynamic Manual. Handbook prepared for Naval Air Systems Command. North American Rockwell Corporation. Columbus. 1970. 516 p. Available at: https://apps.dtic.mil/sti/tr/pdf/AD0723823.pdf (accessed 25.01.2025).

Alperin, M., & Wu, J. J. End Wall and Corner Flow Improvements ot the Rectangular Alperin Jet-Diffuser Ejector. Flight Dynamics Research Corporation, Naval Air Development Center, NADC 77050, 1978. 79 p. Available at: https://apps.dtic.mil/sti/pdfs/ADA057663.pdf (accessed 28.02.2025).

Alperin, M., & Wu, J. J. Recent Development of a Jet-Diffuser Ejector. Journal of Aircraft, 1981, vol. 18, pp. 1011-1018. DOI: 10.2514/3.57594.

Werle, M. J., Paterson, R. W., & Presz, W. M. Flow Structure in a Periodic Axial Vortex Array. Proceeding of 25th Aerospace Sciences Meeting, Nevada, 12 15 January, 1987, pp. 1 9. DOI: 10.2514/6.1987-610.

Presz, W. M., Blinn, R. F., & Morin, B. L. Short Efficient Ejector Systems. Proceeding of 23rd AIAA/SAE/ASME/ASEE Joint Propulsion Conference, San Diego, 29 June 2 July, 1987, pp. 1 9. DOI: 10.2514/6.1987-1837.

Tillman, T. G., Patrick, W. P., & Paterson, R. W. Enhanced Mixing of Supersonic Jets. Proceeding of 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, Massachsetts, 11-13 July, 1988, pp. 1006 1014. DOI: 10.2514/3.23420.

Tillman, T. G., & Paterson, R. W. Supersonic Nozzle Mixer Ejector. Proceeding of 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Monterey, CA, 10-11 July, 1989, pp. 1 9. DOI: 10.2514/6.1989-2925.

Tillman, T. G., Paterson, R. W., & Presz, W. M. Supersonic Nozzle Mixer Ejector. AIAA Journal of Propulsion and Power, vol. 8, no. 2, 1992, pp. 513-519. DOI: 10.2514/3.23506.

Lord, W. K., Jones, C. W., Stern, A. M., Head, V. L., & Krejsa, E. A. Mixer ejector nozzles for jet noise suppression. Proceeding of 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Orlando, 16 18 July, 2002, pp. 1–19. DOI: 10.2514/6.1990-1909.

Presz, W. M., Reynolds, G., & McCormick, D. Thrust augmentation using mixer-ejector-diffuser systems. Proceeding of 32th Aerospace Sciences Meeting & Exhibit, Reno, 10 13 January, 1994, pp. 1–10. DOI: 10.2514/6.1994-20.

Federspiel, J. E., & Kuchar, A. P. Performance Evaluation of a Two Dimensional Convergent-Divergent Ejector Exhaust System, 1988. pp. 1 10. DOI: 10.2514/6.1988-2999.

Stitt, L. E. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft. NASA Reference Publication 1235, 1990. 107 p. Available at: https://ntrs.nasa.gov/api/citations/19900011721/downloads/19900011721.pdf (accessed 08.01.2025).

Der, J. Improved methods of characterizing ejector pumping performance. Journal of Propulsion Power, 1991, vol. 7, no. 3, pp. 412–419. DOI: 10.2514/3.23342.

Lamb, M. Internal Performance Characteristics of Thrust-Vectored Axisymmetric Ejector Nozzles: NASA Technical Memorandum NASA TM 4610, 1998. 232 p. Available at: https://ntrs.nasa.gov/api/citations/19950018918/downloads/19950018918.pdf (accessed 08.01.2025).

Presz, Jr. W., & Werle, M. Multi-stage mixer/ejector systems. Proceeding of 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, 2002, pp. 1 11. DOI: 10.2514/6.2002-4064.

Huang, X-Q., Lia, M., Guo, Z., & Zheng, L. Experimental Investigation of Thrust Augmentation by Ejectors on a Pulse Detonation Engine. Thermal Science, 2015, vol. 19, no. 6, pp. 2105-2114. DOI: 10.2298/TSCI140712066H.

Goff, J. A., & Coogan, C. H. Some two-dimensional aspects of the ejector problem. Journal of Applied Mechanics, 1942, vol. 9, no. 4, pp. 151-154. DOI: 10.1115/1.4009223.

Chapman, D. R. Laminar Mixing of a Compressible Fluid. NACA Report 958, 1950. 7 p. Available at: https://ntrs.nasa.gov/api/citations/19930092022/downloads/19930092022.pdf (accessed 28.02.2025).

Messing, W. E., & Acker, L. W. Transonic Free-Flight Drag Results of Full-Scale Models of 16-Inch-Diameter Ram-Jet Engines. Research memorandum NACA RM E52B19, 1952. 18 p. Available at: https://ntrs.nasa.gov/api/citations/19930090446/downloads/19930090446.pdf (accessed 28.02.2025).

Chow, W. L., & Addy, A. L. Interaction Between Primary and Secondary Streams of Supersonic Ejector Systems and Their Performance Characteristics. AIAA Journal, 1964, vol. 2, no. 4, pp. 686 695. DOI: 10.2514/3.2403.

Supersonic Ejectors. AGARDograph No. 163 Edited by J. J. Ginoux. Von Karman Institute for Fluid Dynamics. London, 1972. 202 p. Available at: https://www.sto.nato.int/publications/AGARD/AGARD-AG-163/AGARD-AG-163.pdf. (accessed 08.01.2025).

Anderson, B. H. Factors Which Influence the Analysis and Design of Ejector Nozzles. Technical Memorandum NASA TM X 67976, 1972. 11 p. Available at: https://ntrs.nasa.gov/api/citations/19720006652/downloads/19720006652.pdf (accessed 25.01.2025).

Hill, P. G. Turbulent Jets in Ducted Streams. Journal of Fluid Mechanics, 1965, vol. 22, iss. 1, pp. 161-186. DOI: 10.1017/S0022112065000654.

Payne, P. R. Steady-State Thrust Augmentors and Jet Pumps. USAAVLABS Technical Report 66-18, 1966. 134 p. Available at: https://apps.dtic.mil/sti/tr/pdf/AD0632126.pdf (accessed 24.01.2025).

Korst, H. H., & Chow, W. L. Non-Isoenergetic Turbulent (Prt = 1) Jet Mixing Between Two Compressible Streams at Constant Pressure. NASA CR-419, 1966. 169 p. Available at: https://ntrs.nasa.gov/api/citations/19660013617/downloads/19660013617.pdf (accessed 28.02.2025).

Hill, P. G. Incompressible Jet Mixing in Converging-Diverging Axisymmetric Ducts. Journal of Basic Engineering, 1967, vol. 89, iss. 1, pp. 210-220. DOI: 10.1115/1.3609555.

Anderson, B. H. Computer Program for Calculating the Flow Field of Supersonic Ejector Nozzles. Technical Note NACA TN-D-7601, 1974. 90 p. Available at: https://ntrs.nasa.gov/api/citations/19740012321/downloads/19740012321.pdf (accessed 28.02.2025).

Anderson, B. H. Assessment of an Analytical Procedure for Predicting Supersonic Ejector Nozzle Performance. Technical Note NACA TN-D-7601, 1974. 51 p. Available at: https://ntrs.nasa.gov/api/citations/19740013281/downloads/19740013281.pdf (accessed 28.02.2025).

Brooke, D., Dusa, D. J., Kuchar, A. P., & Romine, B. M. Initial Performance Evaluation of 2DCD Ejector Exhaust Systems — Two Dimensional Convergent-Divergent. 1986. DOI: 10.2514/6.1986-1615.

Rushmore, W. L., & Zelazny, S. W. A Three Dimensional Turbulent Compressible Flow Model for Ejector and Fluted Mixers: NASA Contractor Report CR-159467, 1978. 133 p. Available at: https://ntrs.nasa.gov/api/citations/19790006154/downloads/19790006154.pdf (accessed 28.02.2025).

DeBonis, J. R. Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression. NASA Technical Memorandum AIAA-92-3570, 1992. 17 p. Available at: https://ntrs.nasa.gov/api/citations/19920017790/downloads/19920017790.pdf. (accessed 08.01.2025).

Jason, E. Computational Study of Variable Area Ejector Rocket Flowfields. 2004. 183 p. Available at: https://utoronto.scholaris.ca/server/api/core/bitstreams/00261dd6-7ba9-420d-b2d5-b54c49df6aae/content. (accessed 08.01.2025).

Liu, Y. H. Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer. International Communications in Heat and Mass Transfer. 2007, no. 34, pp. 197–209. DOI: 10.1016/j.icheatmasstransfer.2006.10.003.

Thirumurthy, D., Blaisdell, A. S., Sullivan J. P., Gregory, A., Lyrintzis, L., & Gregory, A., Lyrintzis. Preliminary design and computational analysis of an ejector nozzle with chevrons. Proceeding of 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, pp. 1 17. DOI: https://doi.org/10.2514/6.2011-918

Luginsland, T. How the nozzle geometry impacts vortex breakdown in compressible swirling-jet flows. AIAA Journal, 2015, vol. 53, iss. 10, pp. 1–15. DOI: 10.2514/1.J053843.

Hoter, Z., Castner, R. S., & Zaman, K. Q. CFD Optimization of Ejector Flaps in a One-Sided Mixer Ejector Nozzle. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. pp. 1 12. DOI: 10.2514/6.2019-0544.

Dong, Z., Sun, M., Wang, Z., Cai, Z., Yao, Y., & Gu, R. Numerical investigation on flow and mixing characteristics inside a converging-diverging mixing duct of rocket-based combined-cycle engine in ejector mode. Aerosp. Sci. Technol. 2020, 106, pp. 1 15. DOI: 10.1016/j.ast.2020.106102.

Huang, H., Zhang, K., Tan, H., Lu, S., Zhao, L., Lei, M., & Ling, W. Flow Characteristics of an Integrated Ejector Nozzle with Tertiary Intake. Journal of Propulsion Technology. 2020, vol. 41, no. 12, pp. 2729–2738. DOI: 10.13675/j.cnki.tjjs.200170.

Li, H., Wang, X., Ning, J., Zhang, P., Hu, H., & Tu, J. Numerical Investigation of the nozzle expansion state and its effect on the performance of the steam ejector based on ideal gas model. Applied Thermal Engineering. 2021, vol. 199, pp. 1 32. DOI: 10.1016/j.applthermaleng.2021.117509.

Li, Z., & Wang, H. Comparison of the Flow Fields between Nozzles with Full-Open and Open-Close Valves at Transonic Velocity. Hindawi Journal of Applied Mathematics, 2022. pp. 1 11. DOI: 10.1155/2022/6875240.

Li, Z., Wang, H., & Huang, H. Analysis of Flow Field of Three-Dimensional Ejector Nozzle with Open-close Alternate Intake Valve at Transonic Velocity. Journal of Aerospace Power. 2023, vol. 38, no. 12, pp. 2937–2947. DOI: 10.13224/j.cnki.jasp.20210581.

Li, Z., & Wang, H. Flow characteristics of ejector nozzles with different auxiliary intake valves. AIP Advances, 2024, vol. 14, iss. 1, article no. 015237. pp. 1 9. DOI: 10.1063/5.0187268.

Vinz, A., & Raichle, A. Investigation of the effects of boundary layer ingestion engine integration on aircraft thrust requirement. CEAS Aeronautical Journal, vol. 15, pp. 1235 1250. DOI: 10.1007/s13272-024-00722-0.

Bellary, S. A. I., Dabir, S. A., Khan, S. A., Tamhane, T., Shaikh, J. H., & Khan, A. Computational Analysis of Thrust Generated by Converging Diverging Nozzle at Different Diverging Angle. Journal of Advanced Research in Numerical Heat Transfer, 2025, vol. 29, iss. 1, pp. 102 128. DOI: 10.37934/arnht.29.1.102128.

Scarlatella, G., Sieder-Katzmann, J., Propst, M., Heutling, T., Petersen, J., Weber, F., Portolani, M., Garutti, M., Bianchi, D., Pastrone, D., Ferrero, A., Tajmar, M., & Bach, C. RANS Simulations of Advanced Nozzle Performance and Retro-Flow Interactions for Vertical Landing of Reusable Launch Vehicles. Aerospace, 2025, vol. 12, iss. 124. pp. 1 30. DOI: 10.3390/aerospace12020124.

Shan, Y., Zhang, J., & Huang, G. Experimental and Numerical Studies on Lobed Ejector Exhaust System for Micro Turbojet Engine. Engineering Applications of Computational Fluid Mechanics, 2011, vol. 5, iss. 1, pp. 141 148. DOI: 10.1080/19942060.2011.11015358.

Schmidt, R., Hupfer, A., & Gummer, V. Thrust augmentation for very small jet engines using a mixer-ejector-system. Proceeding of 24th ISABE Conference, Canberra, 2019. pp. 1-16. Available at: https://www.researchgate.net/publication/378432229_Thrust_Augmentation_for_very_small_jet_engines_using_a_Mixer-_Ejector-System (accessed 28.02.2025).

Bogoi, A., Cican, G., Gall, M., Totu, A., Crunteanu, D. E., & Leventiu, C. Comparative Study of Noise Control in Micro Turbojet Engines with Chevron and Ejector Nozzles Through Statistical, Acoustic and Imaging Insight. Applied Science, 2025, vol. 15, iss. 1, article no. 394, pp. 2 28. DOI: 10.3390/app15010394.




DOI: https://doi.org/10.32620/aktt.2025.4.07