Digital image representation by atomic functions: features for computer vision and machine learning
Abstract
Keywords
Full Text:
PDFReferences
Wang, R., Sun, Y., Zong, J., Wang, Y., Cao, X., Wang, Y., Cheng, X., & Zhang, W. Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review. Remote Sensing, 2024, vol. 16, article no. 2204. DOI: 10.3390/rs16122204.
Wasehun, E. T., Hashemi Beni, L., & Di Vittorio, C. A. UAV and satellite remote sensing for inland water quality assessments: a literature review. Environmental Monitoring and Assessment, 2024, vol. 196, article no. 277. DOI: 10.1007/s10661-024-12342-6.
Wang, J., Wang, Y., Li, G., & Qi, Z. Integration of Remote Sensing and Machine Learning for Precision Agriculture: A Comprehensive Perspective on Applications. Agronomy, 2024, vol. 14, iss. 9, article no. 1975. DOI: 10.3390/agronomy14091975.
Mehedi, I. M., Hanif, M. S., Bilal, M., Vellingiri, M. T., & Palaniswamy, T. Remote Sensing and Decision Support System Applications in Precision Agriculture: Challenges and Possibilities. IEEE Access, 2024, vol. 12, pp. 44786-44798. DOI: 10.1109/ACCESS.2024. 3380830.
Koukiou, G. SAR Features and Techniques for Urban Planning—A Review. Remote Sensing, 2024, vol. 16, iss. 11, article no. 1923. DOI: 10.3390/rs16111923.
Al Shafian, S., & Hu, D. Integrating Machine Learning and Remote Sensing in Disaster Management: A Decadal Review of Post-Disaster Building Damage Assessment. Buildings, 2024, vol. 14, iss. 8, article no. 2344. DOI: 10.3390/buildings14082344.
Yang, Y., Ju, Y., Gao, Y., Zhang, C., & Lam, K.-M. Remote sensing insights into ocean fronts: a literature review. Intelligent Marine Technology and Systems, 2024, vol. 2, article no. 10. DOI: 10.1007/s44295-024-00024-5.
Ye, Q., Wang, Y., Liu, L., Guo, L., Zhang, X., Dai, L., Zhai, L., Hu, Y., Ali, N., Ji, X., et al. Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review. Remote Sensing, 2024, vol. 16, iss. 10, article no. 1709. DOI: 10.3390/rs16101709.
Kadhim, I., & Abed, F. M. A Critical Review of Remote Sensing Approaches and Deep Learning Techniques in Archaeology. Sensors, 2023, vol. 23, iss. 6, article no. 2918. DOI: 10.3390/s23062918.
Avtar, R., Kouser, A., Kumar, A., Singh, D., Misra, P., Gupta, A., Yunus, A. P., Kumar, P., Johnson, B. A., Dasgupta, R., et al. Remote Sensing for International Peace and Security: Its Role and Implications. Remote Sensing, 2021, vol. 13, iss. 3, article no. 439. DOI: 10.3390/rs13030439.
Sayood, K. Introduction to Data Compression, 5th ed. Morgan Kaufman: Cambridge, MA, USA, 2017.
Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 2017, vol. 14, no. 5, pp. 778-782. DOI: 10.1109/LGRS.2017.2681128.
Wang, L., Zhang, M., Gao, X., & Shi, W. Advances and Challenges in Deep Learning-Based Change Detection for Remote Sensing Images: A Review through Various Learning Paradigms. Remote Sensing, 2024, vol. 16, iss. 5, article no. 804. DOI: 10.3390/rs16050804.
Vasile, C.-E., Ulmămei, A.-A., & Bîră, C. Image Processing Hardware Acceleration – A Review of Operations Involved and Current Hardware Approaches. Journal of Imaging, 2024, vol. 10, iss. 12, article no. 298. DOI: 10.3390/jimaging10120298.
Iqbal, U., Davies, T., & Perez, P. A Review of Recent Hardware and Software Advances in GPU-Accelerated Edge-Computing Single-Board Computers (SBCs) for Computer Vision. Sensors, 2024, vol. 24, iss. 15, article no. 4830. DOI: 10.3390/s24154830.
Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao, J. Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Computing Surveys, 2023, vol. 55, no. 9, article no. 184. DOI: 10.1145/3555802.
Jouini, O., Sethom, K., Namoun, A., Aljohani, N., Alanazi, M. H., & Alanazi, M. N. A Survey of Machine Learning in Edge Computing: Techniques, Frameworks, Applications, Issues, and Research Directions. Technologies, 2024, vol. 12, iss. 6, article no. 81. DOI: 10.3390/technologies12060081.
Shi, Y.-Q., & Sun, H. Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards, 3rd ed. CRC Press, 2021.
Bull, D., & Zhang, F. Intelligent Image and Video Compression: Communicating Pictures, 2nd ed. Academic Press, 2021.
Gonzalez, R. C., & Woods, R. E. Digital Image Processing, 2nd ed. Prentice Hall: Upper Saddle River, NJ, USA, 2002.
Makarichev, V., Lukin, V., Illiashenko, O., & Kharchenko, V. Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems. Sensors, 2022, vol. 22, iss. 10, article no. 3751. DOI: 10.3390/s22103751.
Rvachev, V. A. Compactly supported solutions of functional-differential equations and their applications. Russian Mathematical Surveys, 1990, vol. 45, no. 1, pp. 87-120. DOI: 10.1070/RM1990v045n01ABEH002324.
Makarichev, V. A. Approximation of periodic functions using mups (x). Mathematical Notes, 2013, vol. 93, pp. 858-880. DOI: 10.1134/S0001434613050258.
Makarichev, V., Lukin, V., & Brysina, I. On the Impact of Discrete Atomic Compression on Image Classification by Convolutional Neural Networks. Computation, 2024, vol. 12, iss. 9, article no. 176. DOI: 10.3390/computation12090176.
Szeliski, R. Computer Vision: Algorithms and Applications, 2nd ed. Springer: Cham, Switzerland, 2022.
Makarichev, V., Vasilyeva, I., Lukin, V., Vozel, B., Shelestov, A., & Kussul, N. Discrete Atomic Transform-Based Lossy Compression of Three-Channel Remote Sensing Images with Quality Control. Remote Sensing, 2022, vol. 14, iss. 1, article no. 125. DOI: 10.3390/rs14010125.
Chui, C. K., & Jiang, Q. Applied Mathematics: Data Compression, Spectral Methods, Fourier Analysis, Wavelets, and Applications. Atlantis Press: Paris, France, 2013.
Makarichev, V., & Kharchenko, V. Application of dynamic programming approach to computation of atomic functions. Radioelectronic and Computer Systems, 2021, no. 4, pp. 36-45. DOI: 10.32620/reks.2021.4.03.
Makarichev, V., Lukin, V., & Brysina, I. On the Applications of the Special Class of Atomic Functions: Practical Aspects and Perspectives. In Integrated Computer Technologies in Mechanical Engineering; Nechyporuk, M., Pavlikov, V., Kritskiy, D., Eds.; Springer: Cham, Switzerland, 2021; vol. 188, pp. 42-54. DOI: 10.1007/978-3-030-66717-7_4.
Berkolaiko, M., & Novikov, I. On infinitely smooth compactly supported almost-wavelets. Mathematical Notes, 1994, vol. 56, pp. 877-883. DOI: 10.1007/BF02362405.
Welstead, S. Fractal and Wavelet Image Compression Techniques. SPIE Publications: Bellingham, WA, USA, 1999.
Bryant, R. E., & O'Hallaron, D. R. Computer Systems: A Programmer's Perspective, 3rd ed. Pearson: London, UK, 2015.
Robey, R., & Zamora, Y. Parallel and High Performance Computing. Manning: NY, USA, 2021.
Chen, S., & Guo, W. Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics, 2023, vol. 11, iss. 8, article no. 1777. DOI: 10.3390/math11081777.
Huang, C.-H., & Wu, J.-L. Unveiling the Future of Human and Machine Coding: A Survey of End-to-End Learned Image Compression. Entropy, 2024, vol. 26, iss. 5, article no. 357. DOI: 10.3390/e26050357.
Xu, Q., Xiang, Y., Di, Z., Fan, Y., Feng, Q., Wu, Q., & Shi, J. Synthetic Aperture Radar Image Compression Based on a Variational Autoencoder. IEEE Geoscience and Remote Sensing Letters, 2022, vol. 19, article no. 4015905. DOI: 10.1109/LGRS.2021.3097154.
Alves de Oliveira, V., Chabert, M., Oberlin, T., Poulliat, C., Bruno, M., Latry, C., Carlavan, M., Henrot, S., Falzon, F., & Camarero, R. Reduced-Complexity End-to-End Variational Autoencoder for on Board Satellite Image Compression. Remote Sensing, 2021, vol. 13, iss. 3, article no. 447. DOI: 10.3390/rs13030447.
Ahmed, M., Seraj, R., & Islam, S. M. S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics, 2020, vol. 9, iss. 8, article no. 1295. DOI: 10.3390/electronics9081295.
Arthur, D., & Vassilvitskii, S. K-means++: the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 7-9 January 2007, pp. 1027-1035.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 2011, vol. 12, pp. 2825-2830.
Kaufman, L., & Rousseeuw, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons: Hoboken, NJ, USA, 1990.
Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Dziedzic, T., & Zambrzycka, A. LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 20-25 June 2021, Nashville, TN, USA, pp. 1102-1110.
Brysina, I., & Makarichev, V. Generalized Atomic Wavelets. Radioelectronic and Computer Systems, 2018, no. 1, pp. 23-31. DOI: 10.32620/reks.2018.1.03.
Yu, Y., Wang, C., Fu, Q., Kou, R., Huang, F., Yang, B., Yang, T., & Gao, M. Techniques and Challenges of Image Segmentation: A Review. Electronics, 2023, vol. 12, iss. 5, article no. 1199. DOI: 10.3390/electronics12051199.
Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., & Cho, B.-K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sensing, 2023, vol. 15, iss. 2, article no. 354. DOI: 10.3390/rs15020354.
Orchi, H., Sadik, M., & Khaldoun, M. (2022). On Using Artificial Intelligence and the Internet of Things for Crop Disease Detection: A Contemporary Survey. Agriculture, 2022, vol. 12, iss. 1, article no. 9. DOI: 10.3390/agriculture12010009.
Arabahmadi, M., Farahbakhsh, R., & Rezazadeh, J. Deep Learning for Smart Healthcare – A Survey on Brain Tumor Detection from Medical Imaging. Sensors, 2022, vol. 22, iss. 5, article no. 1960. DOI: 10.3390/s22051960.
Xu, Y., Quan, R., Xu, W., Huang, Y., Chen, X., & Liu, F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering, 2024, vol. 11, iss. 10, article no. 1034. DOI: 10.3390/bioengineering11101034.
DOI: https://doi.org/10.32620/aktt.2025.3.08