Turboshaft gas turbine engine thermodynamics calculation method based on blade machine blade to blade description.Part III. Turbine parameters calculation
Abstract
Keywords
Full Text:
PDF (Українська)References
Kurzke, J. A Physics Based Melholody for Building Accurate Gas Turbine Performance Models. Proceedings International Society of Air Breathing Engines, Cincinnati, October 25-30, 2015. 11 p.
Aslanidou, І., Zachos, P. K., Pachidis, V., & Singh R. А physically enhanced method for sub-idle compressor map generation and representation. Proceedings of ASME turbo expo: Power for Land, Sea and Air, Glasgow, June 14-18, 2010. GT2010-23562. 10 р. DOI: 10.1115/GT2010-23562.
Ferrer-Vidal, L. E., Pachidis V., & Tunstall R. J. Generating axial compressor maps to zero speed. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2020, vol. 235, iss. 5, pp. 956–973. DOI: 10.1177/0957650920976052.
Visser, W. P., & Broomhead, M. J. GSP, A Generic Object-Oriented Gas Turbine Simulation Environment. Proceedings of ASME Turbo Expo, Munich, May 8-11, 2000, GT2000-0002. 9 p. DOI: 10.1115/2000-GT-0002.
NPSS Consortium. Available at: https://www.swri.org/markets/electronics-automation/software/aerospace-software/numerical-propulsion-system-simulation-npss (аccessed 25.04.2025).
Jones, S. M. Steady-State Model of Gas Turbines using the Numerical Propulsion System Simulation Code. Proceedings. of ASME TurboExpo, Glasgow, June 14-18, 2010, GT2010-22350. 5 p. DOI: 10.1115/GT2010-22350.
Hustochka, A. N. Identifikatsiya matematiche-skoi modeli dvigatelya AI-25TL pri ego modernizatsii [Mathematic simulation engine AI-225-TL identification for its modernization]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no. 8, pp. 151-154. Availabel at: http://nbuv.gov.ua/UJRN/aktit_2004_8_34 (accessed.25.04.2025). (In Russian).
Antyptsev, Yu. P., & Annopol's'ka, I. Ye., Parshyn, V. V., Khustochka, A. N. Sovershenstvovanie metodov proektirovaniya i dovodki aviatsionnykh gazotu-rbinnykh dvigatelei [Improvement of methods of design and refinement of aviation gas turbine engines]. Visnyk Inzhenernoyi akademiyi Ukrayiny, 2012, vol. 1, pp. 27-33. Availabel at: http://nbuv.gov.ua/UJRN/Viau_2012_1_7 (accessed.25/04/2025). (In Russian)
Ulitenko, Y., Loginov, V., Kravchenko, I., Popov, V., Rasstrygin, O., Yelansky, А. Improving the Efficiency of an Aircraft Power Plant With a Turboprop Engine Based on Watermethanol Mixture Injection. Eastern-European Journal of Enterprise Technologies, 2022, vol. 2, no. 1 (116), pp. 6-15. DOI: 10.15587/1729-4061.2022.254277.
Pavlenko, G. V., Matematicheskoe modeliro¬vanie aviatsionnykh GTD pri issledovanii ikh ekspluatatsionnykh kharakteristik [Mathematical modeling of aircraft gas turbine engines in the study of their operational characteristics]. Kh, KhAI, Publ., 1986. 123 p. (In Russian).
Kislov, O., & Shevchenko, M. Development of a method for selecting a cruising mode and engine control program of a ramjet aircraft. Eastern-European Journal of Enterprise Technologies, 2021, vol. 3, no. 3 (111), pp. 6-14. DOI: 10.15587/1729-4061.2021.233850.
Kislov, O., Ambrozhevich, M., & Shevchenko, M. Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines. Eastern-European Journal of Enterprise Technologies, 2021, vol. 2 no. 8 (110). pp. 23-30. DOI: 10.15587/1729-4061.2021.233850.
Kislov, O. V., & Shevchenko, M. A. Osobennosti rascheta i regulirovaniya dvukhkonturnogo turboreaktivnogo dvigatelya s forsazhnoi kameroi sgoraniya v naruzhnom konture na pryamotochnykh rezhimakh raboty [Features of calculation and regulation of a double-circuit turbojet engine with an afterburner combustion chamber in the external circuit in direct-flow operating modes]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 6(166), pp. 15-23. DOI: 10.32620/aktt.2020.6.02. (In Russian).
Boyko, L. G., & Karpenko, E. L. Vliyanie ugla ustanovki lopatok vkhodnogo napravlyayushchego apparata na ekspluatatsionnye kharakteristiki gazoturbinnogo dvigatelya [Inlet guide vanes blades angle influence on gas turbine engine perfomances]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 4 (51), pp. 43-50. Availabel at: http://nbuv.gov.ua/UJRN/aktit_2008_4_9. (accessed 25.04.2025). (In Russian).
Boyko, L., Datsenko, V., Dyomin, A., & Pizhankova, N. Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting. Eastern-European Journal of Enterprise Technologies, 2021, vol. 4 no. 8(112), pp. 59–66. DOI: 10.15587/1729-4061.2021.238538.
Dacenko, V. A. Vyyavlennya vplyvu shorstkosti ta radial'noho zazoru na kharakterystyku os'ovoho bahatostupenevoho kompresora [Detection of the influence of roughness and radial clearance on the characteristics of an axial multistage compressor]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2024, no. 3, pp. 51-58. DOI: 10.32620/aktt.2024.3.04. (In Ukrainian).
Boyko, L. G., Kislov, O., & Pizhankova, N. Metod rascheta termogazodinamicheskikh parametrov turboval'nogo GTD na osnove poventsovogo opisaniya lopatochnykh mashin. Сhast' 1. Osnovnye uravneniya [Method of calculating thermogasdynamic parameters of turboshaft gas turbine engine based on the rotary description of blade machines. Part 1. Basic equations] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, no. 1(145), pp. 48-58. DOI: 10.32620/aktt.2018.1.05. (In Russian).
Boyko, L. G., Dyomin, A. E., & Pizhankova, N. Metod rascheta termogazodi-namicheskikh parametrov turboval'nogo gazoturbinnogo dvigatelya na osnove poventsovogo opisaniya lopatochnykh mashin. Chast' ІІ. Opredelenie parametrov stupenei i mnogostupenchatykh kompressorov [The method of calculating the thermogasodynamic parameters of a turboshaft gas turbine engine based on the Poventz description of bladed machines. Part II. Determination of parameters of stages and multi-stage compressors] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 1(153), pp. 18-27. DOI: 10.32620/aktt.2019.1.02. (In Russian).
Muhtarov, M. H., & Krichakin, V. I. Metodika ocenki poter' v protochnoj chasti osevyh turbin pri raschete ih harakteristik [Methodology for estimating losses in the flow path of axial turbines when calculating characteristics]. Teplojenergetika, 1969, vol. 7, pp. 27-29. (In Russian).
Horlock, J. H. Axial Flow Turbines: Fluid Mechanics and Thermodynamics. London, Butterworths, Publ., 1966. 275 p.
Wei, N. Significance of Loss Models in Aerothermodinamic Simulation for Axial Turbines [Doctoral Thesis: Department of Energy Technology Division of Heat and Power Technology Royal Institute of Technology]. Sweden, 2000. 128 p. Availabel at https://www.diva-portal.org/smash/get/diva2:8715/FULLTEXT01.pdf – (accessed: 25.04.2025)
DOI: https://doi.org/10.32620/aktt.2025.3.05