Turboshaft gas turbine engine thermodynamics calculation method based on blade machine blade to blade description.Part III. Turbine parameters calculation

Lyudmila Boyko, Nataliya Pizhankova

Abstract


Blade-to-blade modeling of turbomachinery, based on methods for developing the parameters and characteristics of modern gas turbine engines, enables the resolution of a wide range of theoretically and practically significant problems in engine design, development, and operation. It also improves the accuracy of performance calculations. This article investigates thermogasdynamic processes within the flow part of a gas turbine engine and its elements, focusing in particular on a multi-stage gas turbine. The study is based on a method for developing the parameters and operational characteristics of a gas turbine engine, with a key component being a module for the final development of parameters of a multi-stage cooled gas turbine within the engine system. The object of investigation is a high-temperature cooled, multi-stage axial gas turbine for aircraft engines. The main result of this work is the development of a method for incremental sizing of parameters for a cooled, multi-stage turbine, along with a corresponding software package. This method was tested based on real development results. The investigation examined the parameters of the turbine stage blade row and the operating mode associated with rotor speed, showing the influx of impingement on the blade, observed only under specific rotor configurations at the QCD stage. The scientific and practical novelty of this work lies in its comprehensive approach to modeling the operation of a turboshaft gas turbine engine, providing a complete description of the compressor and turbine. This modeling is not feasible without a real-time simulation of thermogas-dynamic phenomena in the flow part of a multi-stage gas turbine, particularly in a single-stage plant behind the middle radius with the arrangement of cooling methods and the place of supply depending on the cooling system, as well as the temperature and losses, the emergence of critical operating modes when the blade screws twisting, which significantly influence turbine performance. The process is described using strict conservation laws for highly compressed gases, under conditions that ensure realistic flow power, consistent with values reported in the literature. The utility of the developed method, implemented in a dedicated software complex, will be connected to the complex of programs for the development of the characteristics of the gas turbine engine.

Keywords


global gas turbine; cooling; critical modes; locked; characteristic; flow angle

References


Kurzke, J. A Physics Based Melholody for Building Accurate Gas Turbine Performance Models. Proceedings International Society of Air Breathing Engines, Cincinnati, October 25-30, 2015. 11 p.

Aslanidou, І., Zachos, P. K., Pachidis, V., & Singh R. А physically enhanced method for sub-idle compressor map generation and representation. Proceedings of ASME turbo expo: Power for Land, Sea and Air, Glasgow, June 14-18, 2010. GT2010-23562. 10 р. DOI: 10.1115/GT2010-23562.

Ferrer-Vidal, L. E., Pachidis V., & Tunstall R. J. Generating axial compressor maps to zero speed. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 2020, vol. 235, iss. 5, pp. 956–973. DOI: 10.1177/0957650920976052.

Visser, W. P., & Broomhead, M. J. GSP, A Generic Object-Oriented Gas Turbine Simulation Environment. Proceedings of ASME Turbo Expo, Munich, May 8-11, 2000, GT2000-0002. 9 p. DOI: 10.1115/2000-GT-0002.

NPSS Consortium. Available at: https://www.swri.org/markets/electronics-automation/software/aerospace-software/numerical-propulsion-system-simulation-npss (аccessed 25.04.2025).

Jones, S. M. Steady-State Model of Gas Turbines using the Numerical Propulsion System Simulation Code. Proceedings. of ASME TurboExpo, Glasgow, June 14-18, 2010, GT2010-22350. 5 p. DOI: 10.1115/GT2010-22350.

Hustochka, A. N. Identifikatsiya matematiche-skoi modeli dvigatelya AI-25TL pri ego modernizatsii [Mathematic simulation engine AI-225-TL identification for its modernization]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no. 8, pp. 151-154. Availabel at: http://nbuv.gov.ua/UJRN/aktit_2004_8_34 (accessed.25.04.2025). (In Russian).

Antyptsev, Yu. P., & Annopol's'ka, I. Ye., Parshyn, V. V., Khustochka, A. N. Sovershenstvovanie metodov proektirovaniya i dovodki aviatsionnykh gazotu-rbinnykh dvigatelei [Improvement of methods of design and refinement of aviation gas turbine engines]. Visnyk Inzhenernoyi akademiyi Ukrayiny, 2012, vol. 1, pp. 27-33. Availabel at: http://nbuv.gov.ua/UJRN/Viau_2012_1_7 (accessed.25/04/2025). (In Russian)

Ulitenko, Y., Loginov, V., Kravchenko, I., Popov, V., Rasstrygin, O., Yelansky, А. Improving the Efficiency of an Aircraft Power Plant With a Turboprop Engine Based on Watermethanol Mixture Injection. Eastern-European Journal of Enterprise Technologies, 2022, vol. 2, no. 1 (116), pp. 6-15. DOI: 10.15587/1729-4061.2022.254277.

Pavlenko, G. V., Matematicheskoe modeliro¬vanie aviatsionnykh GTD pri issledovanii ikh ekspluatatsionnykh kharakteristik [Mathematical modeling of aircraft gas turbine engines in the study of their operational characteristics]. Kh, KhAI, Publ., 1986. 123 p. (In Russian).

Kislov, O., & Shevchenko, M. Development of a method for selecting a cruising mode and engine control program of a ramjet aircraft. Eastern-European Journal of Enterprise Technologies, 2021, vol. 3, no. 3 (111), pp. 6-14. DOI: 10.15587/1729-4061.2021.233850.

Kislov, O., Ambrozhevich, M., & Shevchenko, M. Development of a method to improve the calculation accuracy of specific fuel consumption for performance modeling of air-breathing engines. Eastern-European Journal of Enterprise Technologies, 2021, vol. 2 no. 8 (110). pp. 23-30. DOI: 10.15587/1729-4061.2021.233850.

Kislov, O. V., & Shevchenko, M. A. Osobennosti rascheta i regulirovaniya dvukhkonturnogo turboreaktivnogo dvigatelya s forsazhnoi kameroi sgoraniya v naruzhnom konture na pryamotochnykh rezhimakh raboty [Features of calculation and regulation of a double-circuit turbojet engine with an afterburner combustion chamber in the external circuit in direct-flow operating modes]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 6(166), pp. 15-23. DOI: 10.32620/aktt.2020.6.02. (In Russian).

Boyko, L. G., & Karpenko, E. L. Vliyanie ugla ustanovki lopatok vkhodnogo napravlyayushchego apparata na ekspluatatsionnye kharakteristiki gazoturbinnogo dvigatelya [Inlet guide vanes blades angle influence on gas turbine engine perfomances]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2008, no. 4 (51), pp. 43-50. Availabel at: http://nbuv.gov.ua/UJRN/aktit_2008_4_9. (accessed 25.04.2025). (In Russian).

Boyko, L., Datsenko, V., Dyomin, A., & Pizhankova, N. Devising a method for calculating the turboshaft gas turbine engine performance involving a blade-by-blade description of the multi-stage compressor in a two-dimensional setting. Eastern-European Journal of Enterprise Technologies, 2021, vol. 4 no. 8(112), pp. 59–66. DOI: 10.15587/1729-4061.2021.238538.

Dacenko, V. A. Vyyavlennya vplyvu shorstkosti ta radial'noho zazoru na kharakterystyku os'ovoho bahatostupenevoho kompresora [Detection of the influence of roughness and radial clearance on the characteristics of an axial multistage compressor]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2024, no. 3, pp. 51-58. DOI: 10.32620/aktt.2024.3.04. (In Ukrainian).

Boyko, L. G., Kislov, O., & Pizhankova, N. Metod rascheta termogazodinamicheskikh parametrov turboval'nogo GTD na osnove poventsovogo opisaniya lopatochnykh mashin. Сhast' 1. Osnovnye uravneniya [Method of calculating thermogasdynamic parameters of turboshaft gas turbine engine based on the rotary description of blade machines. Part 1. Basic equations] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2018, no. 1(145), pp. 48-58. DOI: 10.32620/aktt.2018.1.05. (In Russian).

Boyko, L. G., Dyomin, A. E., & Pizhankova, N. Metod rascheta termogazodi-namicheskikh parametrov turboval'nogo gazoturbinnogo dvigatelya na osnove poventsovogo opisaniya lopatochnykh mashin. Chast' ІІ. Opredelenie parametrov stupenei i mnogostupenchatykh kompressorov [The method of calculating the thermogasodynamic parameters of a turboshaft gas turbine engine based on the Poventz description of bladed machines. Part II. Determination of parameters of stages and multi-stage compressors] Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 1(153), pp. 18-27. DOI: 10.32620/aktt.2019.1.02. (In Russian).

Muhtarov, M. H., & Krichakin, V. I. Metodika ocenki poter' v protochnoj chasti osevyh turbin pri raschete ih harakteristik [Methodology for estimating losses in the flow path of axial turbines when calculating characteristics]. Teplojenergetika, 1969, vol. 7, pp. 27-29. (In Russian).

Horlock, J. H. Axial Flow Turbines: Fluid Mechanics and Thermodynamics. London, Butterworths, Publ., 1966. 275 p.

Wei, N. Significance of Loss Models in Aerothermodinamic Simulation for Axial Turbines [Doctoral Thesis: Department of Energy Technology Division of Heat and Power Technology Royal Institute of Technology]. Sweden, 2000. 128 p. Availabel at https://www.diva-portal.org/smash/get/diva2:8715/FULLTEXT01.pdf – (accessed: 25.04.2025)




DOI: https://doi.org/10.32620/aktt.2025.3.05