Modeling processes for preparing high-tech production using the virtual enterprise concept
Abstract
Keywords
Full Text:
PDFReferences
Xiao, H., Zhou, H., Hu, W., & Liu, G.-P. Design and implementation of an interactive networked condition monitoring strategy for plant-wide production equipment toward Industry 4.0. Expert Systems with Applications, 2024, vol. 254, article no. 124376. DOI: 10.1016/j.eswa.2024.124376.
Buck, F., Imdahl, C., Dilger, N., Zellmer, S., & Herrmann, C. Simulation-based planning of process chains and production environments for solid-state batteries. Procedia CIRP, 2023, vol. 116, pp. 426-431. DOI: 10.1016/j.procir.2023.02.072.
Chu, C.-H., & Baroroh, D. K. Production planning and simulation in mixed reality for human work performance variations. Computers & Industrial Engineering, 2024, vol. 193, article no. 110327. DOI: 10.1016/j.cie.2024.110327.
Akhavei, F., Bleicher, F., & Khallaghi, A. An Approach for Optimizing the Preparation and Production Planning Process in Single Item Production. Procedia CIRP, 2016, no. 52, pp. 96-101. DOI: 10.1016/j.procir.2016.07.037.
Arumugam, T., Kamble, N. K., Guntreddi, V., Sakravarthy, N. V., Shanthi, S., & Ponnusamy, S. Analysis and development of smart production and distribution line system in smart grid based on optimization techniques involving digital twin. Measurement: Sensors, 2024, vol. 34, article no. 101272. DOI: 10.1016/j.measen.2024.101272.
Talkhestani, B. A., Jazdi, N., Schlöglc, W., & Weyrich, M. A concept in synchronization of virtual production system with real factory based on anchor-point method. Procedia CIRP, 2018, vol. 67, pp. 13-17. DOI: 10.1016/j.procir.2017.12.168.
Van Nguyen, T. H., Huang, P.-M., Chien, C.-F., & Chang, C.-K. Digital transformation for cost estimation system via meta-learning and an empirical study in aerospace industry. Computers & Industrial Engineering, 2023, vol. 184, article no. 109558. DOI: 10.1016/j.cie.2023.109558.
Wen, X., Cao, H., Li, H., Zheng, J., Ge, W., Chen, E., Gao, X., & Hon, B. A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques. Energy, 2022, vol. 255, article no. 124542. DOI: 10.1016/j.energy.2022.124542.
Diaz, J. E., Handl, J., & Xu, D.-L. Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system. European Journal of Operational Research, 2018, vol. 266, iss. 3, pp. 976-989. DOI: 10.1016/j.ejor.2017.10.062.
Braghirolli, L. F., Mendes, L. G., Engbers, H., Leohold, S., Triska, Y., Flores, M. R., de Souza, R. O., Freitag, M., & Frazzon, E. M. Improving production and maintenance planning with meta-learning-based failure prediction. Journal of Manufacturing Systems, 2024, vol. 75, pp. 42-55. DOI: 10.1016/j.jmsy.2024.05.014.
Shoorkand, H. D., Nourelfath, M., & Hajji, A. A hybrid deep learning approach to integrate predictive maintenance and production planning for multi-state systems. Journal of Manufacturing Systems, 2024, vol. 74, pp. 397-410. DOI: 10.1016/j.jmsy.2024.04.005.
Kommadath, R., Maharana, D., & Kotecha, P. An effective strategy for solving single and multi-unit production planning models with unique process constraints using metaheuristic techniques. Expert Systems with Applications, 2023, vol. 224, article no. 119813. DOI: 10.1016/j.eswa.2023.119813.
Yerlikaya, M. A., & Arıkan, F. A novel framework for production planning and class-based storage location assignment: Multi-criteria classification approach. Heliyon, 2024, vol. 10, iss. 18, article no. e37351. DOI: 10.1016/j.heliyon.2024.e37351.
Seeger, P. M., Yahouni, Z., & Alpan, G. Literature review on using data mining in production planning and scheduling within the context of cyber physical systems. Journal of Industrial Information Integration, 2022, vol. 28, article no. 100371. DOI: 10.1016/j.jii.2022.100371.
Tirkolaee, E. B., Aydin, N. S., & Mahdavi, I. A bi-level decision-making system to optimize a robust-resilient-sustainable aggregate production planning problem. Expert Systems with Applications, 2023, vol. 228, article no. 120476. DOI: 10.1016/j.eswa.2023.120476.
Janecki, L., Reh, D., & Arlinghaus, J. C. Challenges of Quality Assurance in Early Planning and Ramp Up of Production Facilities – Potentials of Planning Automation via Virtual Engineering. Procedia Computer Science, 2024, vol. 232, pp. 2498-2507. DOI: 10.1016/j.procs.2024.02.068.
Samdantsoodol, A., Cang, S., Yu, H., Eardley, A., & Buyantsogt, A. Predicting the relationships between virtual enterprises and agility in supply chains. Expert Systems with Applications, 2017, vol. 84, pp. 58-73. DOI: 10.1016/j.eswa.2017.04.037.
Liu, Z., Shirakashi, R., Kamiebisu, R., Nishi, T., & Matsuda, M. Simulation-Based Optimization Using Virtual Supply Chain Structured by the Configuration Platform. IFAC-PapersOnLine, 2023, vol. 56, iss. 2, pp. 7840-7845. DOI: 10.1016/j.ifacol.2023.10.1145.
Sobchak, A., Kovshar, N., Lutai, L., Fedorenko, M., Fedorenko, M., & Dmytriieva, O. Development of a method of providing ergonomics of a web-interface for customers of a virtual instrument-making enterprise with limited physical capabilities. Eastern-European Journal of Enterprise Technologies, 2021, vol. 2, no. 3 (110), pp. 16-30. DOI: 10.15587/1729-4061.2021.225650.
Wildraut, L., & Stache, U. Planning of energy-efficient production supply systems. Procedia CIRP, 2023, vol. 120, pp. 1576-1581. DOI: 10.1016/j.procir.2023.09.219.
Alfred, R., Chinthamu, N., Jayanthy, T., Muniyandy, E., Dhiman, T. K., & John, N. Implementation of advanced techniques in production and manufacturing sectors through support vector machine algorithm with embedded system. Measurement: Sensors, 2024, vol. 33, article no. 101119. DOI: 10.1016/j.measen.2024.101119.
Pan, Y., Zhong, R. Y., Qu, T., Ding, L., & Zhang, J. Multi-level digital twin-driven kitting-synchronized optimization for production logistics system. International Journal of Production Economics, 2024, vol. 271, article no. 109176. DOI: 10.1016/j.ijpe.2024.109176.
Matsuda, M., Nishi, T., Hasegawa, M., & Matsumoto, S. Virtualization of a supply chain from the manufacturing enterprise view using e-catalogues. Procedia CIRP, 2019, vol. 81, pp. 932-937. DOI: 10.1016/j.procir.2019.03.230.
Avventuroso, G., Silvestri, M., & Pedrazzoli, P. A Networked Production System to Implement Virtual Enterprise and Product Lifecycle Information Loops. IFAC-PapersOnLine, 2017, vol. 50, iss. 1, pp. 7964-7969. DOI: 10.1016/j.ifacol.2017.08.902.
Sutthibutr, N., Hiraishi, K., & Chiadamrong, N. A fuzzy multi-criteria decision-making for optimizing supply chain aggregate production planning based on cost reduction and risk mitigation. Journal of Open Innovation: Technology, Market, and Complexity, 2024, vol. 10, iss. 4, article no. 100377. DOI: 10.1016/j.joitmc.2024.100377.
Ávila, P., Mota, A., Bastos, J., Patrício, L., Pires, A., Castro, H., Cruz-Cunha, M. M., & Varela, L. Framework for a risk assessment model to apply in Virtual / Collaborative Enterprises. Procedia Computer Science, 2021, vol. 181, pp. 612-618. DOI: 10.1016/j.procs.2021.01.208.
Mahmood, K., Shevtshenko, E., Karaulova, T., & Otto, T. Risk assessment approach for a virtual enterprise of small and medium-sized enterprises. Proceedings of the Estonian Academy of Sciences, 2018, no. 67, pp. 17-27. DOI: 10.3176/proc.2017.4.27.
Fedorovich, O., Lutai, L., Kompanets, V., & Bahaiev, I. The Creation of an Optimisation Component-Oriented Model for the Formation of the Architecture of Science-Based Products. Lecture Notes in Networks and Systems [Integrated Computer Technologies in Mechanical Engineering – 2023], 2024, vol. 996, pp. 415-426. DOI: 10.1007/978-3-031-60549-9_31.
Sheng, M. L., & Saide, S. Supply chain survivability in crisis times through a viable system perspective: Big data, knowledge ambidexterity, and the mediating role of virtual enterprise. Journal of Business Research, 2021, vol. 137, pp. 567-578. DOI: 10.1016/j.jbusres.2021.08.041.
Sobchak, A., Lutai, L., & Fedorenko, M. Development of information technology elements for decision-making support aimed at re-structuring production at virtual instrument-making enterprises. Eastern-European Journal of Enterprise Technologies, 2019. – no. 5/4 (101), pp. 53-62. DOI: 10.15587/1729-4061.2019.182039.
DOI: https://doi.org/10.32620/aktt.2025.2.07