The scope of application of additive technologies by the method of plasma surfacing in the manufacture of aircraft engines

Konstantin Balushok, Sergey Chigileychik

Abstract


The determination of the scope of application of additive technologies by the method of plasma surfacing in the manufacture of aircraft engines is determined by ensuring the mechanical and service properties of heat-resistant nickel and titanium alloys during the production of blanks, necessary for the operation and determination of the technological capabilities of this method. To determine the mechanical properties, 140×70×14 mm heat-resistant nickel alloys ЭП 648ВИ, ВЖ 98ВИ and titanium alloys ВТ6, ВТ20 were grown. After growing, all samples underwent heat treatment according to the technical conditions for each alloy. The mechanical properties for ЭП 648ВИ were determined on these samples (transverse direction: σВ=83.5 kgf/mm2; σ0.2= 63.5 kgf/mm2; δ= 11.2 %; ψ = 21.8 %; longitudinal direction: σB=87.5 kgf/mm2; σ0.2= 57.3 kgf/mm2; δ=21.8 %; ψ= 23.5 %), for ВЖ98 (transverse direction: σВ=83.5 kgf/mm2; σ0.2= 63.5 kgf/mm2; δ= 11.2 %; ψ= 21.8 %, longitudinal direction: σВ=87.5 kgf/mm2; σ0.2= 57.3 kgf/mm2; δ=21.8 %; ψ= 23.5 %), for ВТ6 (transverse direction: σВ=92.2 kgf/mm2 σ0.2= 84.8 kgf/mm2; δ= 17.2 %; ψ= 54.3 %; longitudinal direction: σВ=98.9 кгс/мм2; σ0.2= 91.0 кгс/мм2; δ=9.8 %; ψ= 22.5 %), for ВТ20 (transverse direction: σВ= 115 kgf/mm2; σ0.2= 108 kgf/mm2; δ=15 %; ψ=29.3 %; longitudinal direction: σВ=114 kgf/mm2; σ0.2= 103 kgf/mm2; δ= 14.0 %; ψ=37.6 %). The obtained properties of heat-resistant nickel and titanium alloys are not inferior to blanks obtained by casting and forging methods. The scope of application of additive technologies by the method of plasma surfacing in the manufacture of aircraft engines is defined. For heat-resistant nickel alloys, these are parts included in nozzle devices, heat pipes and combustion chambers. For titanium alloys, these are parts included in the body. From the technological possibilities, the plasma surfacing method is most rationally used when growing cylindrical and conical workpieces of parts with a diameter of 150 to 1500 mm. The technology of adaptive plasma cultivation has been introduced into serial production at JSC "Motor Sich". Currently, more than 20 different types of aircraft engine parts are being produced.

Keywords


additive technologies; plasma surfacing; mechanical properties; fircraft engines; growing

References


Moradi, M., Falavandi, H., Moghadam, K. M., & Meiabadi, M. S. M. Experimental Investigation on Laser Cutting Post Process of Additive Manufactured Parts of Poly Lactic Acid (PLA) by 3D Printers Using FDM Method. Modares Mechanical Engineering, 2020, vol. 20, iss. 4, pp. 999-1009. Available at: http://mme.modares.ac.ir/article-15-31700-en.html (accessed 12 Aug. 2024).

Chihyleychyk, S. L., Petryk, I. A., Ovchynny¬kov, O. V., & Kyrylakha, S. V. Dosvid vprovad¬zhennya adytyvnykh tekhnolohiy pry remonti detaley HTD zi splaviv EP 648 VI (KHN50VMTYUB-VI) v umovakh seriynoho vyrobnytstva [Experience in implementing additive technologies during repair of GTE parts from alloy EP 648 VI (KHN50VMTYUB-VI) under conditions of serial production]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 1, pp. 57-63. DOI: 10.32620/aktt.2022.1.07. (In Ukrainian).

Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., & Norrish, J. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. Journal of Manufacturing Processes, 2018, vol. 35, pp. 127-139. DOI: 10.1016/j.jmapro.2018.08.001.

Yarovytsyn, O. V., Cherv’yakov, M. O., & et al. Formuvannya kryteriyiv otsinky prydatnosty zastosuvannya prysadnykh materialiv z nikelevykh stopiv u adytyvnykh tekhnolohiyakh ZD-natoplennya [Formation of Criteria for Evaluating the Suitability of the Use of Filler Materials Made of Nickel Alloys in Additive Technologies of 3D-Surfacing]. Metallofiz. Noveishie Tekhnol., 2024, vol. 46, no. 2, pp. 129-149. DOI: 10.15407/mfint.46.02.0129. (In Ukrainian).

Petrik, I. A., Chigilejchik, S. L., Mitina, T. A., Marchenko, Ju. A., & Gnatenko, M. O. Otsenka vozmozhnosti primeneniya tekhnologii posloynogo formirovaniya sposobom plazmennoy naplavki detaley iz titanovykh splavov uzlov vertoletov GTD [Evaluation of feasibility of applying the technology of layer-by-layer forming by method of plasma surfacing of titanium alloy parts of components of helicopters and gas turbine engines]. Sovremennaja jelektrometallurgija, 2018, no. 3, pp. 45-51. DOI: 10.15407/sem2018.03.07. (In Russian).

Ghnatenko, M. O., Chyghilejchyk, S. L., & Sakhno, S. S. Vyghotovlennja aviacijnykh detalej z zharomicnykh nikelevykh splaviv metodom adytyvnogho plazmovogho naplavlennja [Manufacture of aviation parts from heat-related nickel alloys by multilayer plasma surfacing]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 5, pp. 48-51. DOI: 10.32620/aktt.2021.5.06. (in Ukrainian).

Yuschenko, K. A., Yarovytsyn, O. V., Khruschov, H. D., Petryk, I. A., & Chyhileychik, S. L. Understanding the impact of oxygen and nitrogen content in metal powder on microplasma multilayers deposition of aircraft GTE blade edges. Рroceedings of 9th International conference of young scientist on welding and related technologies, PWI NAS of Ukraine, 23-26 May 2017, pp. 257-261.




DOI: https://doi.org/10.32620/aktt.2024.6.04