Numerical–analitical method for the problems of aerodynamic noise generations in helicopter and quadrotors

Petro Lukianov

Abstract


The subject of this paper is to demonstrate the capabilities of numerical-analytical method for solving problems of sound generation by helicopter and quadrocopter rotors. In particular, the finite difference schemes for the implementation of the numerical-analytical method for steady, non-steady 2-D potential flows describing the generation of noise of aerodynamic origin by a helicopter rotor blade are presented. Examples of the application of the numerical-analytical method to the problems of sound generation by a 3-D unsteady potential flow for the aerodynamic noise of a quadrotor are presented. It should be noted that until recently there was no unified finite difference scheme for solving helicopter rotor acoustics problems for different levels of physical approximations. The numerical-analytical method developed by the author of this paper has been shown to be capable of solving the problems of helicopter and quadrotor blade aeroacoustics for both simplified potential and significantly non-potential flows. The research methods are based on numerical schemes for the aerodynamic near and far sound fields calculations. The paper gives examples of the solution of these problems, analyses the application of the numerical-analytical method and compares it with existing finite difference methods. In particular, the calculation templates of the method for a stationary 2-D flow and a transient 3-D flow are presented and the special features of the selection of the number of points in the calculation template are explained. Depending on the specifics of a particular problem, the number of calculation templates and points in the calculation mesh can vary. This makes it possible to set up a stable calculation for each of the problems to be solved using the numerical-analytical method. In this case, the convergence of the method occurs automatically each time based on the idea of the numerical-analytical method itself. Results and conclusions. The results of a comparative analysis of existing numerical methods for calculating the sound field of helicopter and quadrocopter rotors have shown that the numerical-analytical method developed in detail is effective both for the calculation of sound formation problems in the potential approximation based on the Karman-Guderley equation and for the full system of sound generation equations based on the Navier-Stokes equation for the case of non-potential flow. The efficiency of the numerical-analytical method consists in the fact that it is implicit and allows to adjust the numerical scheme for each specific problem to be solved.

Keywords


aerodynamic noise of helicopter and quadrotor rotors; numerical-analytical method

Full Text:

PDF

References


Gutin, L. Y. On sound field of a rotating propeller. NASATM-1195, 1948, pp. 1-22. Available at: https://ntrs.nasa.gov/citations/20030068996. (accessed 10.08.2024).

Karman, T. von. The similarity low of transonic flow. Journal of Math. and Phisics, 1947, vol. 26, iss. 3, pp. 182-190. Available at: https://www.semanticscholar.org/paper/The-Similarity-Law-of-Transonic-Flow-K%C3%A1rm%C3%A1n/32f50657d5bca4a5663fb18cc90808b0d0e732da. (accessed 10.08.2024).

Guderley, G.Considerations of the Structure of Mixed Subsonic and Supersonic Flow Patterns. Wright Field Report, F-TR-2168- ND,October,1947.

Cole, J. D., Cook, L. P. Transonic Aerodynamics. Elsevier, 2012. 482 p. Available at: https://books.google.com.ua/books/about/Transonic_Aerodynamics.html?id=3n7bBmzdBH8C&redir_esc=y. (accessed 10.08.2024).

Lukianov, P. V. Nestatsionarnoye rasprostraneniye malykh vozmushcheniy ot tonkogo kryla: blizhneye i dal'neye pole [Unsteady propagation of small disturbances from a thin wing: The near and a far fields]. Acoustic bulletin, 2009, vol. 12, no. 3, pp. 41-55. Available at: https://hydromech.org.ua/content/pdf/av/av-12-3(41-55).pdf. (accessed 10.08.2024). (In Russian).

Murman, E. M. Calculation of Plane Steady Transonic Flows. AIAA Journal, 1971, vol. 9, no.1, pp. 114-121. DOI: https://doi.org/10.2514/3.6131.

Hirsch, Ch. Numerical computetion of Internal and External Flows. Vol. 1. Fundamentals of Computational Fluid Dynamics, Second Edition. Elsevier, Burlington, USA, 2007. 675 p.

Murman, E. M. Analysis of Embeded Shock Waves Calculated by Relaxation Methods. AIAA Journal, 1974, vol. 12, iss. 5, pp. 626-633. DOI: https://doi.org/10.2514/3.49309.

Caradonna, F. X., & Isom, M. P. Subsonic and Transonic Potential Flow over Helicopter Rotor Blades. AIAA Journal, 1972, vol. 10, iss. 12, pp. 1606-1612. DOI: https://doi.org/10.2514/3.50404.

Ballhaus, W. R., & Goorjian, P. M. Implicit finite-Difference Computations of Unsteady Transonic Flows about Airfoils Including the Effect of Irregular Shock Motions. AIAA Journal, 1977, vol. 15, iss. 12, pp. 1728-1735. DOI: https://doi.org/10.2514/3.60838.

Ballhaus, W. F. Some Recent Progress in Transonic Flow Computations,VKL Lecture Series:Computational Fluid Dynamics. Von Karman Institute for Fluid Dynamics, Rhode-SAt-Genese, Belgium, March 15-19, 1976. Available at: https://ntrs.nasa.gov/citations/19790010775. (accessed 10.08.2024).

Yu, N. J., Seebass, A. R., &Ballhaus, W. F. Implicit Shock-Fitting Scheme for Unsteady Transonic Flow Computations. AIAA Journal, 1978, vol. 16, iss. 7, pp. 673-678. DOI: https://doi.org/10.2514/3.60957.

Fung, K.-Y., Yu, N. J., & Seebass, A. R. Small Unsteady Perturbations in Transonic Flows. AIAA Journal, 1978, vol. 16, iss. 8, pp. 815-822. DOI: https://doi.org/10.2514/3.60968.

Sobieczky, H. Yu. New Method for Designing Shock-Free Transonic Configurations. AIAA Journal, 1979, vol. 17, iss. 7, pp. 722-729. DOI: https://doi.org/10.2514/3.61209.

Fung, K.-Y., & Chung, A. W. Computations of unsteady transonic aerodynamics using prescribed steady pressures. Journal of Aircraft, 1983, vol. 20, iss. 12, pp. 1058-1061. DOI: https://doi.org/10.2514/3.48212.

Lukianov, P. V. Primeneniye chislenno-analiticheskogo metoda dlya resheniya zadach akustiki [Using of numerical-analytical method for acoustic problems solution]. Acoustical symposium “Consonanse 2005”, Kiev-2005, Inst. Hydromechanics, 27-29 September, pp. 225-230. Available at: https://hydromech.org.ua/content/pdf/cons/cons2005_225-230.pdf. (accessed 10.08.2024). (In Russian).

Lukianov, P. V. Pro odyn chyselno-anality¬chnyi pidkhid do rozviazannia zadachi heneratsii zvuku tonkym krylom. Chastyna I. Zahalna skhema zastosuvannia dlia ploskoi statsio-narnoi zadachi. [On one numerically-analytical approach to solving of a problem on sound generation by a thin wing. Part I. General schematic of application to planer stationary problem]. Akustychnyj visnyk - Acoustic bulletin, 2011, vol. 14, iss. 3, pp. 46-52. Available at: http://hydromech.org.ua/content/uk/av/av-14-3.html. (accessed 10.08.2024). (In Russian).

Lukianov, P. V. Ob odnom chislenno-analiti¬cheskom podhode k resheniju zadachi generacii zvuka tonkim krylom. Chast' II. Shema prilozhenija k nestacionarnym zadacham [On one numerical-analytical approach to solving of a problem on sound generation by a thin wing. Part II. A schematic of application to non-stationaty problems]. Akustychnyj visnyk - Acoustic bulletin, 2012, vol. 15, iss. 3, pp. 45-52. Available at: http://hydromech.org.ua/content/ru/av/15-3_45-52.html. (accessed 10.08.2024). (In Russian).

Courant, R., Friedrichs, K., & Lewy, H. Uber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 1928, vol. 100, pp. 32-74. Available at: https://www.semanticscholar.org/paper/%C3%9Cber-die-partiellen-Differenzengleichungen-der-Courant-Friedrichs/c63f1868620752ecb4d8c47a86631a25649fe6b4. (accessed 10.08.2024).

Lukianov, P., & Dusheba, O. Modeling of Aerodynamic Noise of Quadrotor Type Aerotaxis. Aerospace technic and technology, 2023, vol. 4, pp. 38-49. DOI: https://doi.org/10.32620/aktt.2023.4.05.

Lukianov, P. V. Generatsiya zvuka tonkim trekhmernym krylom: dal'neye pole [System of aero-acoustic equations for the medium with vorticity: general case]. Acoustical symposium “Consonanse 2007”, Kiev-2007, Inst. Hydromechanics, 25-27 September, pp. 163-168. Available at: https://hydromech.org.ua/content/pdf/cons/cons2007-157-162.pdf. (accessed 10.08.2024). (In Russian).

Lukianov, P. V. Ob odnoy modeli aeroaxustiki vyazkogo sjimaemogo gaza. Chast I. Analiz suschestvuyuschih modeley, vyivod razreshayuschey sistemyi uravneniy [On one model for aeroacousics of viscous compressible gas. Part I Analysis of existing models, dedusing of resolving system of equations]. Acoustic bulletin, 2013-2014, vol. 16, iss. 2, pp. 18-30. Available at: https://hydromech.org.ua/content/pdf/av/av-16-2(18-30).pdf. (accessed 10.08.2024). (In Russian).

Willams, F. J. E., & Hawkings, D. L. Sound Generated by Turbulence and Surfaces in Aritrary Motion. Philosophical Transactions of the Royal Socicety A, 1969, vol. 264, iss. 1151, pp. 321-342. DOI: https://doi.org/10.1098/rsta.1969.0031.

Farassat, F. Derivation of Formulations 1 and 1A of Farassat. NASA/TM, 2007-214853, March-2007, 25 p. Available at: https://ntrs.nasa.gov/citations/20070010579. (accessed 10.08.2024).

Lighthill, M. J. On sound Generated Aerodynamically I. Genaral Theory. Proceedings of the Royal Society A, 1952, vol. 211, iss. 1107, pp. 564-587. DOI: https://doi.org/10.1098/rspa.1952.0060.

Fedorchenko, A. T. On some fundamental flaws in present aeroacoustic theory. Journal of Sound and Vibration, 2000, vol. 232, iss. 4, pp. 719-782. DOI: https://doi.org/10.1006/jsvi.1999.2767.

Semiletov, V. A., & Karabasov, S. A. Cabaret scheme for computational aeroacoustics:extension to asynchronous time stepping and 3D flow modeling. Int. Journ. Aeroacoustics, 2014, vol. 13, iss. 3-4, pp. 321-336. DOI: https://doi.org/10.1260/1475-472X.13.3-4.321.

Markesteijn, A. P., & Karabasov, S. A. Time asynchronous relative dimension in space method for multi-scale problems in fluiad dynamics. Journal of Compuatational Physics, 2014, vol. 258, iss. 1, pp. 137-164. DOI: https://doi.org/10.1016/j.jcp.2013.10.035.

Tam, C. K. W., & Webb, J. C. Dispertion-Relation-Preserving Finite Difference Schemes for Computational Acoustics. Journal of Computational Physics, 1993, vol. 107, iss. 2, pp. 262-281. DOI: https://doi.org/10.1006/jcph.1993.1142

Lukianov, P. V. Ob odnoy modeli aeroakustiki vyazkogo szhimayemogo gaza. Chast' II. Shum blizkogo vzaimodeystviya vikhrya i lopasti vertoleta [On one model for aeroacousics of viscous compressible gas. Part II Noise of near helicopter blade-vortex interaction noise]. Acoustic bulletin, 2013-2014, vol. 16, iss. 3, pp. 31-40. Available at: https://hydromech.org.ua/content/pdf/av/av-16-3(31-40).pdf. (accessed 10.08.2024). (In Russian).

Rayleigh, J. W. S. The theory of sound. Vol. 1. Dover Publications, 1945. 520 p. Available at: https://books.google.com.ua/books/about/The_Theory_of_Sound.html?id=v4NSAlsTwnQC&redir_esc=y. (accessed 10.08.2024).

Rayleigh, J. W. S. The theory of sound. Vol. 2. Dover Publications, 1945. 522 p. Available at: https://books.google.com.ua/books/about/The_Theory_of_Sound.html?id=Frvgu1wSFfUC&redir_esc=y. (accessed 10.08.2024).

Lukianov, P. V. Snizheniye BVI-shuma rotora vertolota s pomoshch'yu lopasti s dvoynym izgibom [Helicopter’s rotor BVI-noise reduction by twice-bent blade]. Bulletin of Cherkassy University, Ser.: Mathematics, Informatics, 2017, no. 1-2, pp. 50-64. Available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=VchuM_2017_1-2_7. (accessed 10.08.2024). (In Russian).

Lukianov, P. V. Osobennosti generatsii BVI-shuma pri samolotnoy posadke vertolota [The pecula¬rities of BVI-noise generation at helicopter airplane landing]. Bulletin of Zaporozhsky National University. Ser.: Phys. and Math. Sciences, 2018, no. 2, pp. 73-88. DOI: https://web.znu.edu.ua/cms/index.php?action=category/browse&site_id=5〈=ukr&category_id=1340&path=ves-arkhiv/2018/1333/1340&category_code=1340 (In Russian).

Lukianov, P. V. Osoblyvosti heneratsiyi BVI-shumu rotora helikoptera na rezhymi «Vykhrove kilʹtse» [Pecularities of generation of BVI-noise of a helicopter rotor in ”Vortex ring” mode]. Computer Science and Applied Mathematics, 2021, iss. 2, pp. 36-44. DOI: https://doi.org/10.26661/2413-6549-2021-2-04. (in Ukrainian).




DOI: https://doi.org/10.32620/aktt.2024.6.03