Optimizing adaptability and rational control strategies for cyclogyro systems

Sibei Wei

Abstract


The cyclogyro, due to its potential applications in aviation and complex dynamic characteristics, has become the focus of our research. Although traditional PID control is effective in many cases, it may struggle in handling the complex nonlinear dynamics often encountered in cyclogyro systems. Therefore, the objective of this study was to design and implement a control system for the cyclogyro based on optimized strategies to improve the system stability and response speed. The proposed approach integrates mathematical modeling, optimization algorithms, real-time data analysis, and feedback mechanisms to predict and adjust the system behavior. The performance of traditional PID control was compared with that of Model Predictive Control (MPC) in a dual-target speed control system. The numerical simulation results demonstrated that the MPC-based optimized control significantly outperformed PID control, achieving higher stability and faster response speed when dealing with external disturbances and nonlinear dynamic changes, with the average response time reduced by 92.5% (p < 1e-10). This enhanced performance is due to the system’s ability to dynamically adjust its control strategies in response to varying environmental conditions. The conclusions of this research highlight the substantial advantages of optimized control strategies for cyclogyro systems, offering new insights into the development of complex aviation control systems and demonstrating the potential of these strategies to enhance both performance and adaptability.

Keywords


Cyclogyro; Control System; PID Control; Model Predictive Control (MPC); Optimized Control Strategy; Nonlinear Dynamics; System Stability; Response Speed; Numerical Simulation; Adaptability

Full Text:

PDF

References


Rabiu, L., Ahmad, A., & Gohari, A. Advancements of unmanned aerial vehicle technology in the realm of applied sciences and engineering: A review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 2024, vol. 40, iss. 2, pp. 74-95. DOI: 10.37934/araset.40.2.7495.

Katnur, F. A., Dias, J. V., Kalagond, A. C., & Sajjan, S. C. Cyclo rotor propulsion equipped drone. Journal of Recent Trends in Mechanics, 2024, vol. 9, iss. 1, pp. 13-20.

Zhang, J., & Zhang, Y. A method for UAV reconnaissance and surveillance in complex environments. In: 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 2020, pp. 482-485, DOI: 10.1109/ICCAR49639.2020.9107972.

Boirum, C., & Post, S. Review of historic and modern cyclogyro design. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, 2009, article no. 5023. DOI: 10.2514/6.2009-5023.

Hu, Y., Lim, K., & Hu, W. The research on the performance of cyclogyro. In: 6th AIAA Aviation Technology. Integration and Operations Conference (ATIO), 2006, article no. 7704. DOI: 10.2514/6.2006-7704.

Leger Monteiro, J. A., Páscoa, J. C., & Xisto, C. M. Aerodynamic optimization of cyclorotors. Aircraft Engineering and Aerospace Technology: An International Journal, 2016, vol. 88, iss. 2, pp. 232-245. DOI: 10.1108/AEAT-02-2015-0051.

Du, F., & Hu, Y. The simulation and analysis of the roll stability of the three-rotor cyclogyro. In: 2013 International Powered Lift Conference, 12-14 August 2013, Los Angeles, CA, AIAA 2013-4219. DOI: 10.2514/6.2013-4219.

Sharma, S., Mustafa, J., & Bhati, S. Experimental study of gyroscopic effects on rotating disc. Journal of The Institution of Engineers (India), Series C, 2024, vol. 105, pp. 573-585. DOI: 10.1007/s40032-024-01045-z.

Kou, H., Shi, Y., Du, J., Zhu, Z., Zhang, F., Liang, F., & Zeng, L. Rub-impact dynamic analysis of a rotor with multiple wide-chord blades under the gyroscopic effect and geometric nonlinearity. Mechanical Systems and Signal Processing, 2022, vol. 168, article no. 108563. DOI: 10.1016/j.ymssp.2021.108563.

Ye, J., Wei, J., Zhang, A., Chen, S., Ran, T., & Shu, R. Theoretical and experimental study on the dynamic behavior of spur gear transmission system during hovering maneuver flights. Mechanical Systems and Signal Processing, 2024, vol. 212, article no. 111296. DOI: 10.1016/j.ymssp.2024.111296.

Pan, W., Ling, L., Qu, H., & Wang, M. Coupling dynamic behavior of aero-engine rotor system caused by rolling, pitching and yawing maneuver loads. Applied Mathematical Modelling, 2022, vol. 102, pp. 726-747.

Zaal, P., Popovici, A., & Lewis, E. K. Adaptive hexapod simulator motion based on aircraft stability. In: AIAA Scitech 2020 Forum, 6-10 January 2020, Orlando, FL, AIAA 2020-2268. DOI: 10.2514/6.2020-2268.

Scanlan, R. H., & Truman, J. C. The gyroscopic effect of a rigid rotating propeller on engine and wing vibration modes. Journal of the Aeronautical Sciences, 1950, vol. 17, iss. 10. DOI: 10.2514/8.1758.

Zhang, H., Yang, C., Yang, D., Li, Y., & Yang, C. Investigation of stall inception behavior in a centrifugal compressor with bent pipe/volute coupling effect. Journal of Propulsion and Power, 2019, vol. 35, iss. 2. DOI: 10.2514/1.B36923.

Saile, D., & Gülhan, A. Aeroacoustic coupling effect during the ascent of space transportation systems. AIAA Journal, 2021, vol. 59, iss. 7. DOI: 10.2514/1.J059747.

Kim, C., Ji, C., Bang, J., Koh, G., & Choi, N. A survey on structural coupling design and testing of the flexible military aircraft. International Journal of Aeronautical and Space Sciences, 2024, vol. 25, iss. 1, pp. 122-145. DOI: 10.1007/s42405-023-00643-y.

Kiyak, E. Tuning of controller for an aircraft flight control system based on particle swarm optimization. Aircraft Engineering and Aerospace Technology, 2016, vol. 88, iss. 6, pp. 799-809. DOI: 10.1108/AEAT-02-2015-0037.

Grauer, J. A. Aircraft fault detection using real-time frequency response estimation. In: AIAA Guidance, Navigation, and Control Conference, 4-8 January 2016, San Diego, California, USA, AIAA 2016-0372. DOI: 10.2514/6.2016-0372.

Ming-Bo, H., Wei-Zhi, H., & Yan, H. Application of fuzzy-PID controller in temperature control system of traditional Chinese medicine extraction, 2003.

Kim, J., You, H., & Kim, C. Shock-capturing model using PID controller for high-order discontinuous Galerkin method. In: AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online, AIAA 2023-2630. DOI: 10.2514/ 6.2023-2630.

Kim, J., You, H., & Kim, C. Data-driven optimization of shock-capturing PID controller for high-order methods. In: AIAA SCITECH 2024 Forum, 8-12 January 2024, Orlando, FL, AIAA 2024-1968. DOI: 10.2514/6.2024-1968.

Kulik, A. S., & Dzhulgakov, V. G. Rational control of objects with uncertain dynamics. Aerospace Technic and Technology, 2019, vol. 3, pp. 4-14. DOI: 10.32620/aktt.2019.3.01.

Kulik, A. Rational intellectualization of the aircraft control: resources-saving safety improvement. Green IT Engineering: Components, Networks and Systems Implementation. Studies in Systems, Decision and Control, Springer, Cham, 2017, vol. 105, pp. 173-192. DOI: 10.1007/978-3-319-55595-9_9.

Carlson, J. M., & Doyle, J. Complexity and robustness. Proc Natl Acad Sci U S A, 2022, vol. 99 (Supplement 1), pp. 2538-2545. DOI: 10.1073/pnas.012582499.

Wang, Y., & Sontag, E. D. Algebraic differential equations and rational control systems. SIAM Journal on Control & Optimization, 1992, vol. 30, iss. 5, pp. 1126-1149. DOI: 10.1137/0330060.

Jing-Dun, J., & Fu, Z. Sustainable utilization of saline-alkali land resources through scientific and technological innovation in China. Journal of Agricultural Science and Technology, 2014, vol. 16, iss. 5. pp. 1-7. DOI: 10.13304/j.nykjdb.2014.403.

Mohiuddin, M. B., & Abdallah, A. M. Dynamic modeling and control of quadrotor slung-load system using PID and nonlinear backstepping controller. In: AIAA Scitech 2021 Forum, 11–15 & 19–21 January 2021. DOI: 10.2514/6.2021-0107.

Saini, V. K., & Giri, D. K. Prescribed time spacecraft attitude control using time-varying state-feedback. In: AIAA SCITECH 2023 Forum, 23-27 January 2023. DOI: 10.2514/6.2023-2172.

Gautam, A., Celik, A., & Azarpeyvand, M. An investigation on neck extensions for single and multi-degree of freedom acoustic Helmholtz resonators. In: AIAA AVIATION 2021 FORUM, 2-6 August 2021, Virtual Event, AIAA 2021-2206. DOI: 10.2 514/6.2021-2206.

Hartmann, P., Meyer, C., & Moormann, D. Unified velocity control and flight state transition of unmanned tilt-wing aircraft. Journal of Guidance, Control, and Dynamics, 2017, vol. 40, iss. 6, pp. 1467-1478. DOI: 10.2 514/1. G002168.

Lewis, F. L., & Vrabie, D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, vol. 9, iss. 3, pp. 32-50. DOI: 10.1109/MCAS.2009.933854.

Borase, R. P., Maghade, D. K., Sondkar, S. Y., & et al. A review of PID control, tuning methods and applications. Int. J. Dynam. Control, 2021, vol. 9, pp. 818–827. DOI: 10.1007/s40435-020-00665-4.

Schwenzer, M., Ay, M., Bergs, T., & et al. Review on model predictive control: an engineering perspective. Int. J. Adv. Manuf. Technol., 2021, vol. 117, pp. 1327-1349. DOI: 10.1007/s00170-021-07682-3.

Camacho, E. F., & Bordons, C. Model Predictive Control. Springer London, 2013. 405 p. DOI: 10.1007/978-0-85729-398-5.

Wu, L., & Braatz, R. D. A Direct Optimization Algorithm for Input-Constrained MPC. IEEE Trans. Autom. Control, 2024. DOI: 10.1109/TAC. 2024.3463529.

Shi, E., Zhang, J., Chen, S., Zheng, J., Zhang, Y., & Ng, D. W. K. Wireless Energy Transfer in RIS-Aided Cell-Free Massive MIMO Systems: Opportunities and Challenges. IEEE Commun. Mag., 2022, vol. 60, iss. 3, pp. 26-32. DOI: 10.1109/MCOM.001.2100671.

Jeyalaksshmi, S., Smiles, A. J., Akila, D., Mukherjee, D., & Obaid, A. J. Energy-Efficient Load Balancing Technique to optimize Average response time and Data Center Processing Time in Cloud Computing Environment. J. Phys.: Conf. Ser., 2021, vol. 1963, article no. 012145. DOI: 10.1088/1742-6596/1963/1/012145.

Ni, P., Wang, X., & Li, H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. Fuel, 2020, vol. 279, article no. 118477. DOI: 10.1016/j.fuel.2020.118477.

Li, M., & Nian, H. Perturbation Amplitudes Design Method Based on Confidence Interval Evaluation for Impedance Measurement. IEEE Trans. Ind. Electron., 2024, vol. 71, iss. 10, pp. 12323–12337. DOI: 10.1109/TIE.2024.3352148.

Althoff, M., & Rath, J. J. Comparison of guaranteed state estimators for linear time-invariant systems. Automatica, 2021, vol. 130, article no. 109662. DOI: 10.1016/j.automatica.2021.109662.

Roman, R.-C., Precup, R.-E., & Petriu, E. M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control, 2021, vol. 58, pp. 373-387. DOI: 10.1016/ j.ejcon.2020.08.001.

Li, J., Liu, D., & Li, M. Probabilistic response analysis of nonlinear vibro-impact systems with two correlated Gaussian white noises. Int. J. Non-Linear Mech., 2023, vol. 151, article no. 104370. DOI: 10.1016/j.ijnon linmec.2023.104370.

Wang, J., Jiang, W., Li, K., & Li, K. Reducing cumulative errors of incremental CP decomposition in dynamic online social networks. ACM Trans. Knowl. Discov. Data, 2021, vol. 15, iss. 3, article no. 42, pp. 1-33. DOI: 10.1145/3441645.

Luo, C., Keshtegar, B., Zhu, S. P., Taylan, O., & Niu, X.-P. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis. Comput. Methods Appl. Mech. Eng., 2022, vol. 388, article no. 114218. DOI: 10.1016/j.cma.2021.114218.

Zhang, X., & Liu, H. Model predictive control with Monte Carlo simulation for systems with uncertainties. J. Process Control, 2013, vol. 23, iss. 9, pp. 1416-1426. DOI: 10.1016/j.jprocont.2013.04.008.

Li, C. J. Optimal First-Order Methods for Nonconvex Optimization Using the Stochastic Path-Integrated Differential Estimator. EECS, UC Berkeley, 11 July 2024.

Smith, J. Heuristic Optimization Methods. J. Optim. Tech., 2023, vol. 12, iss. 3, pp. 45-67.

Wang, P., Wang, J., Li, C., Wang, J., Zhu, H. & Guo, M. Grus: Toward Unified-memory-efficient High-performance Graph Processing on GPU. ACM Transactions on Architecture and Code Optimization, 2021, vol. 18, iss. 2, article no. 22, pp. 1-25. DOI: 10.1145/3444844.

Xu, H., Wang, X., & Ji, S. Towards Energy-Efficient Llama2 Architecture on Embedded FPGAs. In: CIKM '24: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024. pp. 5570-5571. DOI: 10.1145/3627673.3679068.




DOI: https://doi.org/10.32620/aktt.2024.6.02