Development on Lua of a software module for determining the drop point of uncontrolled cargo from UAV of aircraft type with Ardupilot control system
Abstract
Keywords
Full Text:
PDF (Українська)References
Alghamdi, Y., Munir, A., & Manh La, H. Architecture, classification, and applications of contemporary unmanned aerial vehicles. IEEE Consumer Electronics Magazine, 2020, vol. 10, no. 6, pp. 9-20. Available at: 10.1109/MCE.2021.3063945 (accessed: 01.10.2024).
Peksa, J., & Mamchur, D. A review on the state of the art in copter drones and flight control systems. Sensors, 2024, vol. 24, no. 11, article no. 3349. DOI: 10.3390/s24113349.
Hassanalian, M., & Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences, 2017, vol. 91, pp. 99-131. DOI: 10.1016/j.paerosci.2017.04.003.
Beard, R. W., McLain, T. W. Small unmanned aircraft: Theory and practice. Princeton and Oxford, Princeton university press Publ., 2012. 320 p. Available at: https://github.com/byu-magicc/mavsim_public (accessed: 01.10.2024).
Mathisen, S. H., Grindheim, V., & Johansen, T. A. Approach methods for autonomous precision aerial drop from a small unmanned aerial vehicle. IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 3566-3573. DOI: 10.1016/j.ifacol.2017.08.624.
Ivanovic, A., & Orsag, M. Parabolic airdrop trajectory planning for multirotor unmanned aerial vehicles. IEEE Access, 2022, vol. 10, pp. 36907-36923. DOI: 10.1109/ACCESS.2022.3164434.
Mardiyanto, R., Pujiantara, M., Suryoatmojo, H., Dikairono, R., & Irfansyah, A. N. Development of unmanned aerial vehicle (UAV) for dropping object accurately based on global positioning system. International Seminar on Intelligent Technology and Its Applications (ISITIA), 2019, pp. 86-90. DOI: 10.1109/ISITIA.2019.8937269.
Ardupilot. Available at: https://ardupilot.org/ (аccessed 01.10.2024).
Civelek, B., & Kivrak, S. A review on the precision guided airdrop systems. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 2019, vol. VIII, no. I, pp. 13-17. Available at: https://www.ijltemas.in/DigitalLibrary/Vol.8Issue1/13-17.pdf (accessed: 01.11.2024).
Vambol, O., Kaluzhynov, I., Barakhov, K., & Kondratiev, A. Ohlyad i analiz suchasnykh kerovanykh system tochnoho povitryanoho desantuvannya vantazhiv [A review and analysis of existing guided precision airdrop systems]. Cosmic Science and Technology, 2023, vol. 29, no. 5, pp. 33-50. DOI: 10.15407/knit2023.05.033.
Wright, R., Benney, R., & McHugh, J. Precision Airdrop System. Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, AIAA, 2005, Article No. 1644. DOI: 10.2514/6.2005-1644.
Boura, D., Strang, K., Semke, W., Schultz, R., Hajicek, D. Automated air drop system for search and rescue applications utilizing unmanned aircraft systems. Proceedings of the Infotech@Aerospace, St. Louis, Missouri, AIAA, 2011, article no. 1528. DOI: 10.2514/6.2011-1528.
Mathisen, S. G., Leira, F. S., Helgesen, H. H., Gryte, K., & Johansen, T. A. Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Autonomous Robots, 2020, vol. 44, pp. 859-875. DOI: 10.1007/s10514-020-09902-3.
Mitridis, D., Mathioudakis, N., Panagiotou, P., & Yakinthos, K. Development of a cargo airdrop modeling method for a tactical blended-wing-body UAV. Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, vol. 1024, no. 1, article no. 012044. DOI: 10.1088/1757-899X/1024/1/012044.
Humennyi, A., Oleynick, S., Malashta, P., Pidlisnyi, O., & Aleinikov, V. Construction of a ballistic model of the motion of uncontrolled cargo during its autonomous highprecision drop from a fixed-wing unmanned aerial vehicle. Eastern-European Journal of Enterprise Technologies, 2024, vol. 5, no. 7 (131), pp. 25-33. DOI: 10.15587/1729-4061.2024.313102.
DOI: https://doi.org/10.32620/aktt.2024.6.01