Model and training method for aerial image object detector with optimization of both robustness and computational efficiency
Abstract
Keywords
Full Text:
PDF (Українська)References
Polina, A. M., Suparwito, H., & Kumalasanti, R. A. Aerial object detection analysis: Challenges and preliminary results. E3S Web of Conferences, 2024, vol. 475, article no. 02017. DOI: 10.1051/e3sconf/202447502017.
Marinó, G. C., Petrini, A., Malchiodi, D., & Frasca, M. Deep neural networks compression: A comparative survey and choice recommendations. Neurocomputing, 2023, vol. 520, pp. 152–170. DOI: 10.1016/j.neucom.2022.11.072.
Syed, R., Ulbricht, M., Piotrowski, K., & Krstic, M. A Survey on Fault-Tolerant Methodologies for Deep Neural Networks. Pomiary Automatyka Robotyka, 2023, vol. 27, iss. 2, pp. 89-98. DOI: 10.14313/par_248/89.
Chen, X., Huang, W., Peng, Z., Guo, W., & Zhang, F. Diversity supporting robustness: Enhancing adversarial robustness via differentiated ensemble predictions. Computers & Security, 2024, vol. 142, article no. 103861. DOI: 10.1016/j.cose.2024.103861.
Niu, Z., Chen, Z., Li, L., Yang, Y., Li, B., & Yi, J. On the Limitations of Denoising Strategies as Adversarial Defenses. arXiv, 2020. DOI: 10.48550/ARXIV.2012.09384.
Lust, J., & Condurache, A. P. Efficient detection of adversarial, out-of-distribution and other misclassified samples. Neurocomputing, 2022, vol. 470, pp. 335–343. DOI: 10.1016/j.neucom.2021.05.102.
Lu, Z., Sun, H., Ji, K., & Kuang, G. Adversarial Robust Aerial Image Recognition Based on Reactive-Proactive Defense Framework with Deep Ensembles. Remote Sensing, 2023, vol. 15, iss. 19, article no. 4660. DOI: 10.3390/rs15194660.
Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M., & Lee, B. A survey of modern deep learning based object detection models. Digital Signal Processing, 2022, vol. 126, article no. 103514. DOI: 10.1016/j.dsp.2022.103514.
Han, Y., Huang, G., Song, S., Yang, L., Wang, H., & Wang, Y. Dynamic Neural Networks: A Survey. arXiv, 2021. DOI: 10.48550/ARXIV.2102.04906.
Meng, L., Li, H., Chen, B.-C., Lan, S., Wu, Z., Jiang, Y.-G., & Lim, S.-N. AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, article no. 01199. DOI: 10.1109/cvpr52688.2022.01199.
Paul, S., & Chen, P.-Y. Vision Transformers Are Robust Learners. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, vol. 36, iss. 2, pp. 2071-2081. DOI: 10.1609/aaai.v36i2.20103.
Kim, J., Chang, S., & Kwak, N. PQK: Model Compression via Pruning, Quantization, and Knowledge Distillation. arXiv, 2021. DOI: 10.48550/ARXIV.2106.14681.
Hawks, B., Duarte, J., Fraser, N. J., Pappalardo, A., Tran, N., & Umuroglu, Y. Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference. Frontiers in Artificial Intelligence, 2021, vol. 4. DOI: 10.3389/frai.2021.676564.
Haque, M., & Yang, W. Dynamic Neural Network is All You Need: Understanding the Robustness of Dynamic Mechanisms in Neural Networks. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, pp. 1489–1498. DOI: 10.1109/iccvw60793.2023.00163.
Moskalenko, V., Kharchenko, V., Moskalenko, A., & Kuzikov, B. Resilience and Resilient Systems of Artificial Intelligence: Taxonomy, Models and Methods. Algorithms, 2023, vol. 16, iss. 3, article no. 165. DOI: 10.3390/a16030165.
Moskalenko, V., & Moskalenko, A. Neural network based image classifier resilient to destructive perturbation influences – architecture and training method. Radioelectronic and Computer Systems, 2022, no. 3, pp. 95-109. DOI: 10.32620/reks.2022.3.07.
Wang, J., Zhang, Z., Wang, M., Qiu, H., Zhang, T., Li, Q., Li, Z., Wei, T., & Zhang, C. Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural Networks. arXiv, 2023. DOI: 10.48550/ARXIV.2302.13520.
Haque, M., & Yang, W. Dynamic Neural Network is All You Need: Understanding the Robustness of Dynamic Mechanisms in Neural Networks. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2023, pp. 1489-1498. DOI: 10.1109/iccvw60793.2023.00163.
Cavagnero, N., Santos, F. D., Ciccone, M., Averta, G., Tommasi, T., & Rech, P. Transient-Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead. IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS), 2022. DOI: 10.1109/iolts56730.2022.9897813.
Dong, J., Qiu, H., Li, Y., Zhang, T., Li, Y., Lai, Z., Zhang, C., & Xia, S.-T. One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 4665-4675. DOI: 10.1109/iccv51070.2023.00432.
Cao, H., & Xue, M. Adversarial Training for Better Robustness. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer Nature Switzerland, 2023, pp. 75-84. DOI: 10.1007/978-3-031-35982-8_6.
Bai, T., Luo, J., Zhao, J., Wen, B., & Wang, Q. Recent Advances in Adversarial Training for Adversarial Robustness. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), 2021, pp. 4312-4321. DOI: 10.24963/ijcai.2021/591.
Athalye, A., Carlini, N., & Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. arXiv, 2018. DOI: 10.48550/ARXIV.1802.00420.
Qiu, P., Wang, Q., Wang, D., Lyu, Y., Lu, Z., & Qu, G. Mitigating Adversarial Attacks for Deep Neural Networks by Input Deformation and Augmentation. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 157-162. DOI: 10.1109/asp-dac47756.2020.9045107.
Zhang, B., Tondi, B., Lv, X., & Barni, M. Challenging the Adversarial Robustness of DNNs Based on Error-Correcting Output Codes. Security and Communication Networks, 2020, vol. 2020, pp. 1–11. DOI: 10.1155/2020/8882494.
Maurício, J., Domingues, I., & Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review. Applied Sciences, 2023, vol. 13, iss. 9, article no. 5521. DOI: 10.3390/app13095521.
Moskalenko, V., Korobov, A., & Moskalenko, Y. Object detection with affordable robustness for UAV aerial imagery: model and providing method. Radioelectronic and Computer Systems, 2024, no. 3, pp. 55–66. DOI: 10.32620/reks.2024.3.04.
Wang, L., & Tien, A. Aerial Image Object Detection with Vision Transformer Detector (ViTDet). IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023. DOI: 10.1109/igarss52108.2023.10282836.
Li, Y., Mao, H., Girshick, R., & He, K. Exploring Plain Vision Transformer Backbones for Object Detection. Lecture Notes in Computer Science, Springer Nature Switzerland, 2022, pp. 280–296. DOI: 10.1007/978-3-031-20077-9_17.
Yuldashev, Y., Mukhiddinov, M., Abdusalomov, A. B., Nasimov, R., & Cho, J. Parking Lot Occupancy Detection with Improved MobileNetV3. Sensors, 2023, vol. 23, iss. 17, article no. 7642. DOI: 10.3390/s23177642.
Nawaz, S. A., Li, J., Bhatti, U. A., Shoukat, M. U., & Ahmad, R. M. AI-based object detection latest trends in remote sensing, multimedia and agriculture applications. Frontiers in Plant Science, 2022, vol. 13. DOI: 10.3389/fpls.2022.1041514.
Caron, M., Touvron, H., Misra, I., Jegou, H., Mairal, J., Bojanowski, P., & Joulin, A. Emerging Properties in Self-Supervised Vision Transformers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, article no. 00951. DOI: 10.1109/iccv48922.2021.00951.
Pinetsuksai, N., Kittichai, V., Jomtarak, R., Jaksukam, K., Tongloy, T., Boonsang, S., & Chuwongin, S. Development of Self-Supervised Learning with Dinov2-Distilled Models for Parasite Classification in Screening. 2023 15th International Conference on Information Technology and Electrical Engineering (ICITEE), 2023, pp. 323-328. DOI: 10.1109/icitee59582.2023.10317719.
Kulkarni, U., S M M., Hallyal, R., Sulibhavi, P., G S. V., Guggari, S., & Shanbhag, A. R. Optimisation of deep neural network model using Reptile meta learning approach. Cognitive Computation and Systems, Institution of Engineering and Technology (IET), 2023. DOI: 10.1049/ccs2.12096.
Kotyan, S., & Vargas, D. V. Adversarial robustness assessment: Why in evaluation both L0 and L∞ attacks are necessary. PLOS ONE, 2022, vol. 17, iss. 4, article no. e0265723. DOI: 10.1371/journal.pone.0265723.
Li, G., Pattabiraman, K., & DeBardeleben, N. TensorFI: A Configurable Fault Injector for TensorFlow Applications. 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), 2018. DOI: 10.1109/issrew.2018.00024.
Zhao, Y., Sun, H., & Wang, S. A Method for Detecting Lightweight Optical Remote Sensing Images Using Improved Yolov5n. Journal of Multimedia Information System, 2023, vol. 10, iss. 3, pp. 215-226. DOI: 10.33851/jmis.2023.10.3.215.
Zou, C., Jeon, W.-S., Rhee, S.-Y., & Cai, M. YOLO-RS: A More Accurate and Faster Object Detection Method for Remote Sensing Images. In Remote Sensing. Remote Sensing, 2023, vol. 15, iss. 15, article no. 3863. DOI: 10.3390/rs15153863.
DOI: https://doi.org/10.32620/aktt.2024.5.11