The influence of changing the combinations of the manufacturing parameters using the SLP technology of the main body - post-border - border on the continuity and roughness of the samples
Abstract
Keywords
Full Text:
PDF (Українська)References
Adjamskiy, S., Kononenko, G., Podolskyi, R., & Badyuk, S. Realizacij tehnologіi selektivnogo lazernogo plavlennja v Ukrainі [Implementation Of Selective Laser Melting Technology In Ukraine]. Kyiv, Naukova Dumka, 2022. 116 p. DOI: 10.15407/978-966-00-1856-3.
Khairallah, S. A., & Anderson, A. T. Mesoscopic simulation model of selective laser melting of stainless steel. Powder. J. Mate. Process. Technol, 2014, no. 214, pp. 2627–2636.
Nesma, T., Aboulkhairab, I., Maskerya, C., Tucka, I., & Ashcrofta, N. On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. Journal of Materials Processing Technology, 2016, vol. 230, pp. 88-98.
Zhang, B., Dembinski, L., & Coddet, C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A, 2013, vol. 584 (1), pp. 21-31.
Hua-Zhen, J., Zheng-Yang, L., Fengc Peng-Yue, T., Qi-Sheng, W., Yun-Long, C., Shi-Wen, F., Huan, L., & He-Jian, G. X. Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Optics & Laser Technology, 2019, vol. 119, article no. 105592.
Bidare, P., Bitharas, I., Ward, R. M., Attallah, M. M., & Moore, A. J. Laser powder bed fusion in high-pressure atmospheres. The International Journal of Advanced Manufacturing Technology, 2018, vol. 99, pр. 543–555.
Roehling, T. T., Wu, S. S. Q., Khairallah, S. A., Roehling, J. D., Soezeri, S. S., Crumb, M. F., & Matthews, M. J. Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Materialia, 2017, vol. 128, pp. 197-206. DOI: 10.1016/j.actamat.2017.02.025.
Savalani, M. M., & Pizarro, J. M. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium. Rapid Prototyping Journal, 2016, vol. 22 (1), pp. 115-122. DOI: 10.1108/rpj-07-2013-0076.
Mertens, R., Dadbakhsh, S., Humbeeck, J. V., & Kruth, J.-P. Application of base plate preheating during selective laser melting. Procedia CIRP, 2018, vol. 74, pp. 5-11. DOI: 10.1016/j.procir.2018.08.002.
Adjamskiy, S., Kononenko, G., Podolskyi, R., & Badyuk, S. Doslіdzhennja efektivnostі elektrohіmіchnogo polіruvannja zrazkіv zmіnnogo pererіzu z rіznoju shorstkіstju zі stalі AISI 316L, vigotovlenih za tehnologіiju SLM [Research efficiency electrochemical polishing variable section samples with different roughness of steel AISI 316L, manufactured by technology of selective laser melting]. Aviacijno-kosmichna texnika i texnologiya - Aerospace Technic and Technology, 2021, no. 2 (170), pp. 66-73. DOI: 10.32620/aktt.2021.2.08.
Kononenko, G. A., Adzhamskij, S. V., Podolskij, R. V., Safronova, O. A., Shpak, E. A., & Deryagin, A. I. Vnutrishni zalishkovi napruzhennya v aditivnomu virobnictvi (Oglyad) [Internal residual stressesin additive manufacturing (Overview)]. Fundamentalni ta prikladni problemi chornoyi metalurgiyi – Fundamental and applied problems of ferrous metallurgy, 2023, no. 37, pp. 434-446. DOI: 10.52150/2522-9117-2023-37-434-446.
DOI: https://doi.org/10.32620/aktt.2024.4sup2.17