Evaluation of the influence of anisotropic properties of single-crystal turbine blades of aircraft turbofan engines on their long-term strength

Yevhen Nemanezhyn, Gennadiy Lvov, Yuriy Torba

Abstract


Long-term static strength is one of the most important parameters to be calculated at the life-time design stage of aircraft engine turbine blades. The importance of studying and modeling this parameter is based on many factors. In particular, it should be noted that one of these factors is the peculiarities of the anisotropic characteristics of single-crystal turbine blades made of nickel heat-resistant alloys for a wide temperature and power load range. Another important factor is the different crystallographic orientations of the single crystals. The analysis of the literature has shown that to date, there are no general unified approaches for assessing the long-term strength of single-crystal turbine blades. The main approaches described in scientific literature include micromechanical (physical, crystallographic) and phenomenological models for assessing the durability of structures made of single-crystal heat-resistant nickel alloys. Many proprietary methods have also been developed in the scientific community. The majority of existing approaches, which are described in several literature sources, have many advantages and disadvantages. In this study, we propose a comprehensive approach for calculating and evaluating the long-term strength of single-crystal gas turbine blades. The proposed algorithm is based on obtaining the equations of the Larson-Miller parameter distribution by approximating the literature experimental data for different crystallographic orientations of turbine blades. The basis for numerical modeling of the distribution of the Larson-Miller parameter over the volume of the turbine blade was the calculation of creep according to Norton’s law. The equations of the Larson-Miller parameter for different crystal orientations obtained during the approximation were used in the finite element modeling of its distribution on the example of a cooled high-pressure turbine blade. Calculations were performed using the capabilities of the ANSYS Workbench software package. Based on the computation results, the time-to-failure was modeled for different crystallographic orientations and temperature states of the blade.

Keywords


finite-element modeling; anisotropy; single-crystal alloy; crystallographic orientation; creep; long-term strength; Larson-Miller parameter; turbine blades; aircraft engine

References


Semenov, A. S., & Getsov, L. B. Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters. Strength of materials, 2014, vol. 46, pp. 38-48. DOI: 10.1007/s11223-014-9513-2.

Cailletaud, G. A micromechanical approach to inelastic behavior of metals. International journal of plasticity, 1992, vol. 8, no. 1, pp. 55-73. DOI: 10.1016/0749-6419(92)90038-E.

Busso, E. P., Meissonnier, F. T., & O’Dowd, N. P. Gradient-dependent deformation of two-phase single crystals. Journal of mechanics and physics of solids, 2000, vol. 48, no. 11, pp. 2333-2361. DOI: 10.1016/S0022-5096(00)00006-5.

Nouailhas, D., & Freed, A. D. A viscoplastic theory for anisotropic materials. Journal of engineering materials and technology – transactions of the ASME, 1992, vol. 114, pp. 97-104. DOI: 10.1115/1.2904149.

Besson, J., Cailletaud, G., Chaboche, J.-L., & Forest, S. Non-linear mechanics of materials. Springer. Verlag. Dordrecht, 2010, no. 1, article no. 433 p. DOI: 10.1007/978-90-481-3356-7.

Singh, H. P., Rawat, A., Manral, A. R., & Kumar, P. Computational analysis of a gas turbine blade with different materials. Materials today: proceedings, 2020, vol. 44, no. 2, pp. 1-7. DOI: 10.1016/j.matpr.2020.06.486.

Choi, S. H., & Krempl, E. Viscoplasticity theory based on overstress applied to the modeling of cubic single crystals. European journal of mechanics A-solids, 1989, vol. 8, pp. 219-233.

Grishchenko, A. I., Semenov, A. S., & Getsov, L. B. Modeling inelastic deformation of single crystal superalloys with account of γ/γ' phases evolution. Materials physics and mechanics, 2015, vol. 24, no. 4. pp. 325-330.

Getsov, L. B., Semenov, A. S., Besschetnov, V. A., et al. Long-term strength determination for cooled blades made of monocrystalline superalloys, Thermal engineering, 2017, vol. 64, pp. 280-287. DOI: 10.1134/S0040601517040048.

Vorobiov, Yu. S., Getsov, L. B., Melnikov, B. E., & Semenov, A. S. Vibration problems of foundations, seismic resistance and strength of turbomachinery. Part 2, Nauchno-technicheskie vedomosti SPGPU, 2013, vol. 4. no. 1, pp. 302-319.

Gao, H. F., Fei, C. W., Bai, G. C., & Ding, L. Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction. Aerospace science and technology, 2016, vol. 49, pp. 289-300. DOI: 10.1016/j.ast.2015.12.017.

Getsov, L., Semenov, A., & Staroselsky, A. A failure criterion for single-crystal superalloys during thermocyclic loading, Materials and technology, 2008, vol. 42, no. 1, p. 3-12.

Shang, Z., Wei, X., Song, D., Zou, J., Liang, S., Liu, G., Nie, L., & Gong, X. Microstructure and mechanical properties of a new nickel based single crystal superalloy. Journal of materials research and technology, 2020, vol. 9, no. 5, pp. 11641-11649. DOI: 10.1016/j.jmrt.2020.08.032.

Haq, A. U., Yang, X. G., & Shi, D. Q. Isothermal fatigue and creep-fatigue interaction behavior of nickel-base directionally solidified superalloy. Strength of materials, 2018, vol. 50, pp. 98-106. DOI: 10.1007/s11223-018-9947-z.

Vo, D.-T., Mai, T.-D., Kim, B., Jung, J.-S., & Ryu, J. Numerical investigation of crack initiation in high-pressure gas turbine blade subjected to thermal-fluid-mechanical low-cycle fatigue. International journal of heat and mass transfer, 2023, vol. 202, article no. 092017. DOI: 10.1016/j.ijheatmasstransfer.2022.123748.

Vasilyev, B., & Selivanov, A. Numerical method of single-crystal turbine blade static strength estimation taking into account plasticity and creep effects. Materials physics and mechanics, 2019, vol. 42, no. 3, pp. 311-322. DOI: 42.311-322.10.18720/MPM.4232019_6.

Holubovs'kyy, Ye. R., Bychkov, N. H., Khamidullin, A. Sh., & Bazyleva, O. A. Eksperymental'na otsinka krystalohrafichnoyi anizotropiyi termichnoyi vtomy monokrystaliv splavu na osnovi Ni3Al dlya vysokotemperatu-rnykh detaley AHTD [Experimental evaluation of crystallographic anisotropy of thermal fatigue of single crystals of Ni3Al alloy for high-temperature AGTD parts]. Herald of aeroenginebuilding, 2011, no. 2, pp. 244-248.

Habgood, K., & Arel, I. Revisiting Kramer’s rule for solving dense linear systems. SpringSim 2010. Proceedings of the 2010 spring simulation multiconference, 2010, no. 82, pp. 1-8. DOI: 10.1145/1878537.1878623.

Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Numerical simulation of the natural frequencies dependence of turbine blade vibrations on single-crystal anisotropy. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds). InterPartner 2023, Advanced Manufacturing Processes V, LNME, Springer, Cham, 2023, pp. 485-497. DOI: 10.1007/978-3-031-42778-7_45.

Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Metody`ka ocinky` zalezhnosti vlasny`x chastot koly`van` lopatok gazovy`x turbin vid anizotropiyi monokry`stalu [A method for evaluation of the dependence of gas turbine blade vibrations on monocrystalline anisotropy]. Aviacijno-kosmichna texnika i texnologiya - Aerospace technic and technology, 2023, vol. 4sup2 (190), pp. 50-58. DOI: 10.32620/aktt.2023.4sup2.06.

Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Numerical simulation of the steady creep of single-crystal alloys. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D., (eds). ICTM 2022, LNNS, Spinger, Cham, 2023, vol. 657, pp. 421-429. DOI: 10.1007/978-3-031-36201-9_36.

Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Metody`ka vy`znachennya xaraktery`sty`k staloyi povzuchosti monokry`stalichnogo splavu [A method for determining the characteristics of the steady creep of a single crystal alloy]. Aviacijno-kosmichna texnika i texnologiya - Aerospace technic and technology,, 2022, vol. 4sup2 (182), pp. 42-49. DOI: 10.32620/aktt.2022.4sup2.07.

Nemanezhyn Ye. O., L'vov H. I., & Torba, Yu. I., Chysel'ne modelyuvannya povzuchosti lopatky turbiny z monokrystalichnoho splavu [Numerical modeling of creep of a single-crystal alloy turbine blade]. Bulletin of the National Technical University "KhPI". Series: Dynamics and strength of machines, 2023, no.2, pp. 88-94. DOI: 10.20998/2078-9130.2023.2.276861.




DOI: https://doi.org/10.32620/aktt.2024.4sup2.06