Evaluation of the influence of anisotropic properties of single-crystal turbine blades of aircraft turbofan engines on their long-term strength
Abstract
Keywords
Full Text:
PDF (Українська)References
Semenov, A. S., & Getsov, L. B. Thermal fatigue fracture criteria of single crystal heat-resistant alloys and methods for identification of their parameters. Strength of materials, 2014, vol. 46, pp. 38-48. DOI: 10.1007/s11223-014-9513-2.
Cailletaud, G. A micromechanical approach to inelastic behavior of metals. International journal of plasticity, 1992, vol. 8, no. 1, pp. 55-73. DOI: 10.1016/0749-6419(92)90038-E.
Busso, E. P., Meissonnier, F. T., & O’Dowd, N. P. Gradient-dependent deformation of two-phase single crystals. Journal of mechanics and physics of solids, 2000, vol. 48, no. 11, pp. 2333-2361. DOI: 10.1016/S0022-5096(00)00006-5.
Nouailhas, D., & Freed, A. D. A viscoplastic theory for anisotropic materials. Journal of engineering materials and technology – transactions of the ASME, 1992, vol. 114, pp. 97-104. DOI: 10.1115/1.2904149.
Besson, J., Cailletaud, G., Chaboche, J.-L., & Forest, S. Non-linear mechanics of materials. Springer. Verlag. Dordrecht, 2010, no. 1, article no. 433 p. DOI: 10.1007/978-90-481-3356-7.
Singh, H. P., Rawat, A., Manral, A. R., & Kumar, P. Computational analysis of a gas turbine blade with different materials. Materials today: proceedings, 2020, vol. 44, no. 2, pp. 1-7. DOI: 10.1016/j.matpr.2020.06.486.
Choi, S. H., & Krempl, E. Viscoplasticity theory based on overstress applied to the modeling of cubic single crystals. European journal of mechanics A-solids, 1989, vol. 8, pp. 219-233.
Grishchenko, A. I., Semenov, A. S., & Getsov, L. B. Modeling inelastic deformation of single crystal superalloys with account of γ/γ' phases evolution. Materials physics and mechanics, 2015, vol. 24, no. 4. pp. 325-330.
Getsov, L. B., Semenov, A. S., Besschetnov, V. A., et al. Long-term strength determination for cooled blades made of monocrystalline superalloys, Thermal engineering, 2017, vol. 64, pp. 280-287. DOI: 10.1134/S0040601517040048.
Vorobiov, Yu. S., Getsov, L. B., Melnikov, B. E., & Semenov, A. S. Vibration problems of foundations, seismic resistance and strength of turbomachinery. Part 2, Nauchno-technicheskie vedomosti SPGPU, 2013, vol. 4. no. 1, pp. 302-319.
Gao, H. F., Fei, C. W., Bai, G. C., & Ding, L. Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction. Aerospace science and technology, 2016, vol. 49, pp. 289-300. DOI: 10.1016/j.ast.2015.12.017.
Getsov, L., Semenov, A., & Staroselsky, A. A failure criterion for single-crystal superalloys during thermocyclic loading, Materials and technology, 2008, vol. 42, no. 1, p. 3-12.
Shang, Z., Wei, X., Song, D., Zou, J., Liang, S., Liu, G., Nie, L., & Gong, X. Microstructure and mechanical properties of a new nickel based single crystal superalloy. Journal of materials research and technology, 2020, vol. 9, no. 5, pp. 11641-11649. DOI: 10.1016/j.jmrt.2020.08.032.
Haq, A. U., Yang, X. G., & Shi, D. Q. Isothermal fatigue and creep-fatigue interaction behavior of nickel-base directionally solidified superalloy. Strength of materials, 2018, vol. 50, pp. 98-106. DOI: 10.1007/s11223-018-9947-z.
Vo, D.-T., Mai, T.-D., Kim, B., Jung, J.-S., & Ryu, J. Numerical investigation of crack initiation in high-pressure gas turbine blade subjected to thermal-fluid-mechanical low-cycle fatigue. International journal of heat and mass transfer, 2023, vol. 202, article no. 092017. DOI: 10.1016/j.ijheatmasstransfer.2022.123748.
Vasilyev, B., & Selivanov, A. Numerical method of single-crystal turbine blade static strength estimation taking into account plasticity and creep effects. Materials physics and mechanics, 2019, vol. 42, no. 3, pp. 311-322. DOI: 42.311-322.10.18720/MPM.4232019_6.
Holubovs'kyy, Ye. R., Bychkov, N. H., Khamidullin, A. Sh., & Bazyleva, O. A. Eksperymental'na otsinka krystalohrafichnoyi anizotropiyi termichnoyi vtomy monokrystaliv splavu na osnovi Ni3Al dlya vysokotemperatu-rnykh detaley AHTD [Experimental evaluation of crystallographic anisotropy of thermal fatigue of single crystals of Ni3Al alloy for high-temperature AGTD parts]. Herald of aeroenginebuilding, 2011, no. 2, pp. 244-248.
Habgood, K., & Arel, I. Revisiting Kramer’s rule for solving dense linear systems. SpringSim 2010. Proceedings of the 2010 spring simulation multiconference, 2010, no. 82, pp. 1-8. DOI: 10.1145/1878537.1878623.
Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Numerical simulation of the natural frequencies dependence of turbine blade vibrations on single-crystal anisotropy. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds). InterPartner 2023, Advanced Manufacturing Processes V, LNME, Springer, Cham, 2023, pp. 485-497. DOI: 10.1007/978-3-031-42778-7_45.
Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Metody`ka ocinky` zalezhnosti vlasny`x chastot koly`van` lopatok gazovy`x turbin vid anizotropiyi monokry`stalu [A method for evaluation of the dependence of gas turbine blade vibrations on monocrystalline anisotropy]. Aviacijno-kosmichna texnika i texnologiya - Aerospace technic and technology, 2023, vol. 4sup2 (190), pp. 50-58. DOI: 10.32620/aktt.2023.4sup2.06.
Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Numerical simulation of the steady creep of single-crystal alloys. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D., (eds). ICTM 2022, LNNS, Spinger, Cham, 2023, vol. 657, pp. 421-429. DOI: 10.1007/978-3-031-36201-9_36.
Nemanezhyn, Ye., Lvov, G., & Torba, Yu. Metody`ka vy`znachennya xaraktery`sty`k staloyi povzuchosti monokry`stalichnogo splavu [A method for determining the characteristics of the steady creep of a single crystal alloy]. Aviacijno-kosmichna texnika i texnologiya - Aerospace technic and technology,, 2022, vol. 4sup2 (182), pp. 42-49. DOI: 10.32620/aktt.2022.4sup2.07.
Nemanezhyn Ye. O., L'vov H. I., & Torba, Yu. I., Chysel'ne modelyuvannya povzuchosti lopatky turbiny z monokrystalichnoho splavu [Numerical modeling of creep of a single-crystal alloy turbine blade]. Bulletin of the National Technical University "KhPI". Series: Dynamics and strength of machines, 2023, no.2, pp. 88-94. DOI: 10.20998/2078-9130.2023.2.276861.
DOI: https://doi.org/10.32620/aktt.2024.4sup2.06