Optimization of particle acceleration parameters of special cold spray nozzles via neural network and genetic algorithm
Abstract
Keywords
Full Text:
PDFReferences
Li, W. Y., Cao, C. C., & Yin, S. Solid-state cold spraying of Ti and its alloys: A literature review. Progress in Materials Science, 2020, vol. 110, pp. 1-53. DOI: 10.1016/j.pmatsci.2019.100633.
Hu, W. J., Sergii, M., Tan, K., & Cao, T. T. Research on Wear Resistance Coating of Aircraft Titanium Alloy Parts by Cold Spraying Technology. Aerospace technic and technology, 2020, vol. 6, pp. 61-71. DOI: 10.32620/aktt.2020.6.07.
Hu, W. J., Tan, K., & Shorinov, O. Study on Multi-parameter of Cold Spraying Technology via RSM and BP+GA Methods. International Conference on Artificial Intelligence and Advanced Manufacturing, Belgium, Brussels, 2023, pp. 272-278. DOI: 10.1049/icp.2023.2950.
Hu, W. J., Tan, K., Sergii, M., & Liu, X. L. Study of cold spray nozzle throat on acceleration characteristics via CFD. Journal of Engineering Sciences, 2021. vol. 8. no. 1. pp. 8-12. DOI: 10.21272/jes.2021.8(1).f3.
Dolmatov, A. I., & Bilchuk, O. V., Modelling of Gas Flow with Solid Particles in a Short Nozzle. Metallofiz. Noveishie Tekhnol, 2018, vol. 40, no. 9, pp. 1257-1271. DOI: 10.15407/mfint.40.09.1257.
Hu, W. J., Tan, K., Sergii, M., & Cao, T. T. Study on structure and technological parameters of multi-channel cold spraying nozzle. Eastern-European Journal of Enterprise Technologies, 2021, vol. 5, no. 113, pp. 6-14. DOI: 10.15587/1729-4061.2021.242707.
Liu, W. J., Yu, H., & Chen, D. M. Prediction of Aviation Turbine Component Remanufacturing Time Based on GA-BP Neural Network. Mechanical Design, 2023, vol. 40, no. 08, pp. 69-75. DOI: 10.3390/en12061026.
Shi, M., Wang, Z., & Gan, J. Surface hardness prediction model of shot peening sample based on GA-BP neural network. Surface Technology, 2022, vol. 51, no. 1, pp. 332-338+357. DOI: 10.16490/j.cnki.issn.1001-3660.2022.01.036.
Ding, F. J., Jia, X. D., & Hong, T. J. Flow stress prediction model of 6061 aluminum alloy sheet based on GA-BP and PSO-BP neural networks. Rare Metal Materials and Engineering, 2020, vol. 49, no. 6, pp. 1840-1853.
Gummadi, K., Gummadi, K., Gribble, R., Ratnasamy, S., Shenker, S., & Stoica, I. The Impact of DHT Routing Geometry on Resilience and Proximity. Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications. SIGCOMM’03, Karlsruhe, Germany, Aug. 2003, pp. 381-394. DOI: 10.1145/863955.863998.
DOI: https://doi.org/10.32620/aktt.2024.4.08