Stress intensity factor determination methods for aircraft structures
Abstract
Keywords
Full Text:
PDF (Українська)References
§ 25.571 Damage-tolerance and fatigue evaluation of structure. Available at: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-C/subject-group-ECFR7f2a560a8b50a3f/section-25.571. (Accessed 29 May 2024).
Ihnatovych, S., Karuskevych, M., Maslak, T., & Yutskevych, S. Resurs ta dovhovichnist aviatsiinoi tekhniky. [Service life and durability of aircraft]. Kyiv, Vydavnytstvo NAU, 2015. 164 p. (in Ukrainian).
Savruk, M. Koeffitsientyi intensivnosti napryazheniy v telah s treshchinami [Stress Intensity Factors in Cracked Bodies: Reference Manual]. Kiеv, Naukova dumka, 1988. 618 p. (in Russian).
Sih, G. C. Handbook of stress-intensity factors: stress-intensity factor solutions and formulas for reference. Bethlehem, PA : Lehigh University, Institute of Fracture and Solid Mechanics, 1973, Vol. 1. 420 p.
Stress intensity factors handbook ; ed. by Y. Murakami. Pergamon, 1987, vol. 1. 1464 p.
Handbook for Damage Tolerant Design. Available at: https://www.afgrow.net/applications/ DTDHandbook/pdfs.aspx (Accessed 29 May 2024).
Maitii, S. K. Fracture mechanics: fundamentals and applications. India, University of Cambridge ESOL Examinations, 2015. 295 p.
Oberkampf, W. L., Trucano, T. G., & Hirsch, C. Verification, validation, and predictive capability in computational engineering and physics. Applied Mechanics Reviews, 2004, vol. 57, iss. 5, pp. 345–384. DOI: 10.1115/1.1767847.
Marloff, R. H., Leven, M. M., Ringler, T. N., & Johnson, R. L. Photoelastic determination of stress-intensity factors. Experimental Mechanics, 1971, vol. 11, iss. 12, pp. 529–539. DOI: 10.1007/bf02329095.
Experimental techniques in fracture mechanics ; ed. by A. S. Kobayashi, J. S. Epstein. Ames, Iowa State University Press, 1973. 150 p.
Theocaris, P. Local yielding around a crack tip in plexiglas. Journal of Applied Mechanics, 1970, vol. 37, iss. 2, pp. 409–415. DOI: 10.1115/1.3408521.
Baik, M. C., Choi, S., Jai-Sug Hawong, & Kwon, J.-D. Determination of stress-intensity factors by the method of caustics in anisotropic materials. Experimental Mechanics, 1995, vol. 35, pp. 137–143. DOI: 10.1007/bf02326471.
Kirugulige, M., & Tippur, H. V. Mixed-mode dynamic crack growth in a functionally graded particulate composite: Experimental Measurements and Finite Element Simulations. Journal of Applied Mechanics, 2008, vol. 75, iss. 5, pp. 1–14. DOI: 10.1115/1.2932095.
Mogadpalli, G. P., & Parameswaran, V. Determination of stress intensity factor for cracks in orthotropic composite materials using digital image correlation. Strain, 2008, vol. 44, iss. 6, pp. 446–452. DOI: 10.1111/j.1475-1305.2007.00391.x.
Du, Y., Díaz, F. A., Burguete, R. L., & Patterson, E. A. Evaluation using digital image correlation of stress intensity factors in an aerospace Panel. Experimental Mechanics, 2010, vol. 51, iss. 1, pp. 45–57. DOI: 10.1007/s11340-010-9335-5.
Bonesteel, R. M., Piper, D. E., & Davinroy, A. T. Compliance and ki calibration of double cantilever beam (DCB) specimen. Engineering Fracture Mechanics, 1978, vol. 10, iss. 2, pp. 425–428. DOI: 10.1016/0013-7944(78)90022-x.
Huang, W., Yang, S., Zhang, N., Yuan, F.-G., & Jiang, X. Direct measurement of opening mode stress intensity factors using flexoelectric strain gradient sensors. Experimental Mechanics, 2014, Vol. 55, iss. 2, pp. 313–320. DOI: 10.1007/s11340-014-9914-y.
Shukla, A. Practical Fracture Mechanics in Design. New York, CRC Press, 2004. 525 p.
Dally, J. W., & Sanford, R. J. Strain-gage methods for measuring the opening-mode stress-intensity factor, K I. Experimental Mechanics, 1987, vol. 27, iss. 4, pp. 381–388. DOI: 10.1007/bf02330311.
Sanford, R. J. A critical re-examination of the Westergaard method for solving opening-mode crack problems. Mechanics Research Communications, 1979, vol. 6, iss. 5, pp. 289–294. DOI: 10.1016/0093-6413(79)90033-8.
Sanford, R. J. Principles of Fracture Mechanics. Pearson, 2003. 416 p.
Parnas, L., Bilir, Ö. G., & Tezcan, E. Strain gage methods for measurement of opening mode stress intensity factor. Engineering Fracture Mechanics, 1996, vol. 55, iss. 3, pp. 485–492. DOI: 10.1016/0013-7944(95)00214-6.
Kuang, J. H., & Chen, L. S. A single strain gage method for KI measurement. Engineering Fracture Mechanics, 1995, vol. 51, iss. 5, pp. 871–878. DOI: 10.1016/0013-7944(94)00298-v.
Shukla, A., Agarwal, B. D., & Bhushan, B. Determination of stress intensity factor in orthotropic composite materials using strain gages. Engineering Fracture Mechanics, 1989, vol. 32, iss. 3, pp. 469–477. DOI: 10.1016/0013-7944(89)90318-4.
Kondo, T., Kobayashi, M., & Sekine, H. Strain gage method for determining stress intensities of sharp-notched strips. Experimental Mechanics, 2001, vol. 41, iss. 1, pp. 1–7. DOI: 10.1007/bf02323098.
Hamdi, A., Benseddiq, N., & Mejni, F. Rectangular strain-rosette method for measuring the mode I stress-intensity factor KI and T-stress. Engineering, Technology & Applied Science Research, 2017, vol. 7, iss. 5, pp. 1922–1929. DOI: 10.48084/etasr.1396.
Kalthoff, J. F., & Bürgel, A. Influence of loading rate on shear fracture toughness for failure mode transition. International Journal of Impact Engineering, 2004, vol. 30, iss. 8-9, pp. 957–971. DOI: 10.1016/j.ijimpeng.2004.05.004.
Dally, J. W., & Barker, D. B. Dynamic measurements of initiation toughness at high loading rates. Experimental Mechanics, 1988, vol. 28, iss. 3, pp. 298–303. DOI: 10.1007/bf02329026.
Mejni, F., Kanit, T., Nianga, J. M., & Imad, A. An examination of techniques based on two strain gages for the determination of stress intensity factor KI. Engineering Fracture Mechanics, 2020, vol. 236, pp. 1-24. DOI: 10.1016/j.engfracmech.2020.107191.
Dai, T.-T., Jia, Z.-G., Ren, L., & Fu, X. Kalman filter-based multitype measurement data fusion for stress intensity factor evaluation in marine structures. Structural Control and Health Monitoring, 2023, vol. 2023, pp. 1–16. DOI: 10.1155/2023/2743309.
Sarangi, H., Murthy, K. S. R. K., & Chakraborty, D. Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors. Engineering Fracture Mechanics, 2013, vol. 110, pp. 189–200. DOI: 10.1016/j.engfracmech.2013.07.014.
Khelil, F., Belhouari, M., Aour, B., Benhamena, A., & Benaoum, F. A new FEM approach for the determination of fracture parameters in polymethyl-metacrylate PMMA. Manufacturing Science and Technology, 2015, vol. 3, iss. 5, pp. 294–299. DOI: 10.13189/mst.2015.030516.
Paul, P., Murthy, K. S. R. K., Chakraborty, D. A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations. Theoretical and Applied Fracture Mechanics, 2018, vol. 94, pp. 57–70. DOI: 10.1016/j.tafmec.2018.01.001.
Chakraborty, D., Chakraborty, D., & Murthy, K. S. R. K. A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials. Composite Structures, 2017, vol. 160, pp. 185–194. DOI: 10.1016/j.compstruct.2016.10.044.
Chakraborty, D., Chakraborty, D., & Murthy, K. S. R. K. Optimal strain gage location for determination of mode I stress intensity factor for orthotropic laminates using a single strain gage. Challenge Journal of Structural Mechanics, 2016, vol. 2, iss. 3, pp. 179-184. DOI: 10.20528/cjsmec.2016.09.024.
Maleski, M. J., Kirugulige, M. S., & Tippur, H. V. A method for measuring mode I crack tip constraint under static and dynamic loading conditions. Experimental Mechanics, 2004, vol. 44, iss. 5, pp. 522–532. DOI: 10.1007/bf02427964.
Ricci, V., Shukla, A., & Singh, R. P. Evaluation of fracture mechanics parameters in bimaterial systems using strain gages. Engineering Fracture Mechanics, 1997, vol. 58, iss. 4, pp. 273–283. DOI: 10.1016/s0013-7944(97)00133-1.
Dally, J. Experimental stress analysi. New York, McGraw-Hill, 1991. 639 p.
Bürgel, A., Shin, H., Bergmanshoff, D., & Kalthoff, J. Optimization of the strain-gauge- method for measuring mode-II stress intensity factors. VIIth bilateral Czech/German symposium: signifi-cance of hybrid method for assessment of reliability and durability in engineering sciences, Liblice, Chech Republic str. 11, 1999, pp. 5.
Sarangi, H., Murthy, K. S. R. K., & Chakraborty, D. Radial locations of strain gages for accurate measurement of mode I stress intensity factor. Materials & Design, 2010, vol. 31, iss. 6, pp. 2840–2850. DOI: 10.1016/j.matdes.2009.12.043.
Berger, J. R., & Dally, J. W. An overdeterministic approach for measuringK I using strain gages. Experimental Mechanics, 1988, vol. 28, iss. 2, pp. 142–145. DOI: 10.1007/bf02317564.
Wei, J., & Zhao, J. H. A two-strain-gage technique for determining mode I stress-intensity factor. Theoretical and Applied Fracture Mechanics, 1997, vol. 28, iss. 2, pp. 135–140. DOI: 10.1016/s0167-8442(97)00038-4.
DOI: https://doi.org/10.32620/aktt.2024.4.03