Stress intensity factor determination methods for aircraft structures

Iryna Dzhavadova, Sergey Ignatovich

Abstract


During calculations for the fatigue and residual strength of aircraft structural elements, it is necessary to establish a functional relationship between the structure’s loading data, crack configuration, and one of the parameters characterizing the material’s limit state at the crack tip the stress intensity factor (SIF). This paper provides an overview of methods for determining SIFs. Three main approaches are described here: analytical, numerical, and experimental. The appropriateness of each approach is analyzed. It has been found that for full-scale aviation thin-walled structures with a supporting longitudinal-transverse load set of variable stiffness, subjected to complex external loading conditions and with contact surfaces and contact stresses present between structural elements, the determination of SIFs is significantly complicated when using analytical and/or numerical models. It has been established that experimental methods using strain gauge techniques are most suitable for such tasks, particularly the method proposed by J. W. Dally and R. J. Sanford, known in English technical literature as DST. The theoretical formulations of this approach are described, recommendations for determining the strain gauge orientation are presented, and existing modifications of the method are considered. The applicability of the strain gauge method to different types of materials (brittle and plastic) and to various specimen configurations is demonstrated. The review revealed potential problems that may arise when applying this method. The authors present their vision regarding the prospects for developing experimental methods for real-time monitoring of the conditions of aviation structures. In particular, a hybrid approach is proposed that combines the strain gauge method with the finite element method and the digital image correlation method. Three possible application methods are described depending on the tasks. In addition, the importance of integrating these methods into the overall diagnostic system for the timely detection and analysis of defects occurring during the operation of aviation structures is emphasized.

Keywords


crack; stress intensity factor; strain gauge; fracture mechanics

References


§ 25.571 Damage-tolerance and fatigue evaluation of structure. Available at: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-C/part-25/subpart-C/subject-group-ECFR7f2a560a8b50a3f/section-25.571. (Accessed 29 May 2024).

Ihnatovych, S., Karuskevych, M., Maslak, T., & Yutskevych, S. Resurs ta dovhovichnist aviatsiinoi tekhniky. [Service life and durability of aircraft]. Kyiv, Vydavnytstvo NAU, 2015. 164 p. (in Ukrainian).

Savruk, M. Koeffitsientyi intensivnosti napryazheniy v telah s treshchinami [Stress Intensity Factors in Cracked Bodies: Reference Manual]. Kiеv, Naukova dumka, 1988. 618 p. (in Russian).

Sih, G. C. Handbook of stress-intensity factors: stress-intensity factor solutions and formulas for reference. Bethlehem, PA : Lehigh University, Institute of Fracture and Solid Mechanics, 1973, Vol. 1. 420 p.

Stress intensity factors handbook ; ed. by Y. Murakami. Pergamon, 1987, vol. 1. 1464 p.

Handbook for Damage Tolerant Design. Available at: https://www.afgrow.net/applications/ DTDHandbook/pdfs.aspx (Accessed 29 May 2024).

Maitii, S. K. Fracture mechanics: fundamentals and applications. India, University of Cambridge ESOL Examinations, 2015. 295 p.

Oberkampf, W. L., Trucano, T. G., & Hirsch, C. Verification, validation, and predictive capability in computational engineering and physics. Applied Mechanics Reviews, 2004, vol. 57, iss. 5, pp. 345–384. DOI: 10.1115/1.1767847.

Marloff, R. H., Leven, M. M., Ringler, T. N., & Johnson, R. L. Photoelastic determination of stress-intensity factors. Experimental Mechanics, 1971, vol. 11, iss. 12, pp. 529–539. DOI: 10.1007/bf02329095.

Experimental techniques in fracture mechanics ; ed. by A. S. Kobayashi, J. S. Epstein. Ames, Iowa State University Press, 1973. 150 p.

Theocaris, P. Local yielding around a crack tip in plexiglas. Journal of Applied Mechanics, 1970, vol. 37, iss. 2, pp. 409–415. DOI: 10.1115/1.3408521.

Baik, M. C., Choi, S., Jai-Sug Hawong, & Kwon, J.-D. Determination of stress-intensity factors by the method of caustics in anisotropic materials. Experimental Mechanics, 1995, vol. 35, pp. 137–143. DOI: 10.1007/bf02326471.

Kirugulige, M., & Tippur, H. V. Mixed-mode dynamic crack growth in a functionally graded particulate composite: Experimental Measurements and Finite Element Simulations. Journal of Applied Mechanics, 2008, vol. 75, iss. 5, pp. 1–14. DOI: 10.1115/1.2932095.

Mogadpalli, G. P., & Parameswaran, V. Determination of stress intensity factor for cracks in orthotropic composite materials using digital image correlation. Strain, 2008, vol. 44, iss. 6, pp. 446–452. DOI: 10.1111/j.1475-1305.2007.00391.x.

Du, Y., Díaz, F. A., Burguete, R. L., & Patterson, E. A. Evaluation using digital image correlation of stress intensity factors in an aerospace Panel. Experimental Mechanics, 2010, vol. 51, iss. 1, pp. 45–57. DOI: 10.1007/s11340-010-9335-5.

Bonesteel, R. M., Piper, D. E., & Davinroy, A. T. Compliance and ki calibration of double cantilever beam (DCB) specimen. Engineering Fracture Mechanics, 1978, vol. 10, iss. 2, pp. 425–428. DOI: 10.1016/0013-7944(78)90022-x.

Huang, W., Yang, S., Zhang, N., Yuan, F.-G., & Jiang, X. Direct measurement of opening mode stress intensity factors using flexoelectric strain gradient sensors. Experimental Mechanics, 2014, Vol. 55, iss. 2, pp. 313–320. DOI: 10.1007/s11340-014-9914-y.

Shukla, A. Practical Fracture Mechanics in Design. New York, CRC Press, 2004. 525 p.

Dally, J. W., & Sanford, R. J. Strain-gage methods for measuring the opening-mode stress-intensity factor, K I. Experimental Mechanics, 1987, vol. 27, iss. 4, pp. 381–388. DOI: 10.1007/bf02330311.

Sanford, R. J. A critical re-examination of the Westergaard method for solving opening-mode crack problems. Mechanics Research Communications, 1979, vol. 6, iss. 5, pp. 289–294. DOI: 10.1016/0093-6413(79)90033-8.

Sanford, R. J. Principles of Fracture Mechanics. Pearson, 2003. 416 p.

Parnas, L., Bilir, Ö. G., & Tezcan, E. Strain gage methods for measurement of opening mode stress intensity factor. Engineering Fracture Mechanics, 1996, vol. 55, iss. 3, pp. 485–492. DOI: 10.1016/0013-7944(95)00214-6.

Kuang, J. H., & Chen, L. S. A single strain gage method for KI measurement. Engineering Fracture Mechanics, 1995, vol. 51, iss. 5, pp. 871–878. DOI: 10.1016/0013-7944(94)00298-v.

Shukla, A., Agarwal, B. D., & Bhushan, B. Determination of stress intensity factor in orthotropic composite materials using strain gages. Engineering Fracture Mechanics, 1989, vol. 32, iss. 3, pp. 469–477. DOI: 10.1016/0013-7944(89)90318-4.

Kondo, T., Kobayashi, M., & Sekine, H. Strain gage method for determining stress intensities of sharp-notched strips. Experimental Mechanics, 2001, vol. 41, iss. 1, pp. 1–7. DOI: 10.1007/bf02323098.

Hamdi, A., Benseddiq, N., & Mejni, F. Rectangular strain-rosette method for measuring the mode I stress-intensity factor KI and T-stress. Engineering, Technology & Applied Science Research, 2017, vol. 7, iss. 5, pp. 1922–1929. DOI: 10.48084/etasr.1396.

Kalthoff, J. F., & Bürgel, A. Influence of loading rate on shear fracture toughness for failure mode transition. International Journal of Impact Engineering, 2004, vol. 30, iss. 8-9, pp. 957–971. DOI: 10.1016/j.ijimpeng.2004.05.004.

Dally, J. W., & Barker, D. B. Dynamic measurements of initiation toughness at high loading rates. Experimental Mechanics, 1988, vol. 28, iss. 3, pp. 298–303. DOI: 10.1007/bf02329026.

Mejni, F., Kanit, T., Nianga, J. M., & Imad, A. An examination of techniques based on two strain gages for the determination of stress intensity factor KI. Engineering Fracture Mechanics, 2020, vol. 236, pp. 1-24. DOI: 10.1016/j.engfracmech.2020.107191.

Dai, T.-T., Jia, Z.-G., Ren, L., & Fu, X. Kalman filter-based multitype measurement data fusion for stress intensity factor evaluation in marine structures. Structural Control and Health Monitoring, 2023, vol. 2023, pp. 1–16. DOI: 10.1155/2023/2743309.

Sarangi, H., Murthy, K. S. R. K., & Chakraborty, D. Experimental verification of optimal strain gage locations for the accurate determination of mode I stress intensity factors. Engineering Fracture Mechanics, 2013, vol. 110, pp. 189–200. DOI: 10.1016/j.engfracmech.2013.07.014.

Khelil, F., Belhouari, M., Aour, B., Benhamena, A., & Benaoum, F. A new FEM approach for the determination of fracture parameters in polymethyl-metacrylate PMMA. Manufacturing Science and Technology, 2015, vol. 3, iss. 5, pp. 294–299. DOI: 10.13189/mst.2015.030516.

Paul, P., Murthy, K. S. R. K., Chakraborty, D. A strain gage technique for mode I notch stress intensity factor of sharp V-notched configurations. Theoretical and Applied Fracture Mechanics, 2018, vol. 94, pp. 57–70. DOI: 10.1016/j.tafmec.2018.01.001.

Chakraborty, D., Chakraborty, D., & Murthy, K. S. R. K. A strain gage technique for the determination of mixed mode stress intensity factors of orthotropic materials. Composite Structures, 2017, vol. 160, pp. 185–194. DOI: 10.1016/j.compstruct.2016.10.044.

Chakraborty, D., Chakraborty, D., & Murthy, K. S. R. K. Optimal strain gage location for determination of mode I stress intensity factor for orthotropic laminates using a single strain gage. Challenge Journal of Structural Mechanics, 2016, vol. 2, iss. 3, pp. 179-184. DOI: 10.20528/cjsmec.2016.09.024.

Maleski, M. J., Kirugulige, M. S., & Tippur, H. V. A method for measuring mode I crack tip constraint under static and dynamic loading conditions. Experimental Mechanics, 2004, vol. 44, iss. 5, pp. 522–532. DOI: 10.1007/bf02427964.

Ricci, V., Shukla, A., & Singh, R. P. Evaluation of fracture mechanics parameters in bimaterial systems using strain gages. Engineering Fracture Mechanics, 1997, vol. 58, iss. 4, pp. 273–283. DOI: 10.1016/s0013-7944(97)00133-1.

Dally, J. Experimental stress analysi. New York, McGraw-Hill, 1991. 639 p.

Bürgel, A., Shin, H., Bergmanshoff, D., & Kalthoff, J. Optimization of the strain-gauge- method for measuring mode-II stress intensity factors. VIIth bilateral Czech/German symposium: signifi-cance of hybrid method for assessment of reliability and durability in engineering sciences, Liblice, Chech Republic str. 11, 1999, pp. 5.

Sarangi, H., Murthy, K. S. R. K., & Chakraborty, D. Radial locations of strain gages for accurate measurement of mode I stress intensity factor. Materials & Design, 2010, vol. 31, iss. 6, pp. 2840–2850. DOI: 10.1016/j.matdes.2009.12.043.

Berger, J. R., & Dally, J. W. An overdeterministic approach for measuringK I using strain gages. Experimental Mechanics, 1988, vol. 28, iss. 2, pp. 142–145. DOI: 10.1007/bf02317564.

Wei, J., & Zhao, J. H. A two-strain-gage technique for determining mode I stress-intensity factor. Theoretical and Applied Fracture Mechanics, 1997, vol. 28, iss. 2, pp. 135–140. DOI: 10.1016/s0167-8442(97)00038-4.




DOI: https://doi.org/10.32620/aktt.2024.4.03