Method of determining the vibration characteristics of industrial equipment in the frequency and time domain
Abstract
Keywords
Full Text:
PDF (Українська)References
Lopez, B. S., & Alcaide, A. V. Blockchain, Artificial Intelligence, Internet of Things to Improve Governance, Financial Management and Control of Crisis: Case Study COVID-19. SocioEconomic Challenges, 2020, vol. 4, iss. 2, pp. 78-89. DOI: 10.21272/sec.4(2).78-89.2020.
Fessenmayr, F., Benfer, M., Gartner, P., & Lanza, G. Selection of traceability-based, automated decision-making methods in global production networks. Procedia CIRP, 2022, vol. 107, pp. 1349-1354. DOI: 10.1016/j.procir.2022.05.156.
Rajagopal, N. K., Qureshi, N. I., Durga, S., Ramirez-Asis, E. H., Huerta-Soto, R. M., Gupta, S. K., Deepak, S., & Ahmad, M. Future of Business Culture: An Artificial Intelligence-Driven Digital Framework for Organization Decision-Making Process. Complexity, 2022, article no. 7796507. DOI: 10.1155/2022/7796507.
Mei, J., Zheng, G., & Zhu, L. Governance mechanisms implementation in the evolution of digital platforms: A case study of the Internet of Things platform. R&D Manag, 2022, vol. 52, pp. 498-516. DOI: 10.1111/radm.12494.
Umair, M., Cheema, M.A., Cheema, O., Li, H., Lu, H. Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors, 2021, vol. 21, article no. 3838. DOI: 10.3390/s21113838.
Sánchez, R. V., Siguencia, J. F., Villacís, M., Cabrera, D., Cerrada, M., & Heredia, F. Combining Design Thinking and Agile to Implement Condition Monitoring System: A Case Study on Paper Press Bearings. IFAC Papers OnLine, 2022, vol. 55, pp. 187-192. DOI: 10.1016/j.ifacol.2022.09.205.
Ingemarsdotter, E., Kambanou, M. L., Jamsin, E., Sakao, T., & Balkenende, R. Challenges and Solutions in condition-based maintenance implementation-A multiple case study. J. Clean. Prod, 2021, vol. 296, article no. 126420. DOI: 10.1016/j.jclepro.2021.126420.
Nata, C., Laurence, Hartono, N., & Cahyadi, L. Implementation of Condition-based and Predictive-based Maintenance using Vibration Analysis. In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok, Indonesia, 14-15 September 2021, IEEE: Piscataway Township, NJ, USA, 2021, pp. 90-95. DOI: 10.1109/IC2IE53219.2021.9649400.
Chu, T., Nguyen, T., Yoo, H., & Wang, J. A review of vibration analysis and its applications. Heliyon, 2024, vol. 10, iss. 5, article no. E26282. DOI: 10.1016/j.heliyon.2024.e26282.
Jiang X. Research on Wind Turbine Fault Diagnosis Method Realized by Vibration Monitoring. Annals of Data Science, 2024, vol. 11, pp. 749-758. DOI: 10.1007/s40745-023-00497-x.
Chrystal, R. What is vibration analysis and how can it help optimize predictive maintenance? Available online: https://www.ibm.com/blog/vibration-analysis/ (accessed 12 March 2024).
Chen, J. Vibration condition measure instrument of motor using MEMS accelerometer. In Proceedings of the 2nd International Conference on Advances in Materials, Machinery, Electronics (AMME 2018), Xi’an City, China, 20-21 January 2018, AIP Conf. Proc., 2018, vol. 1955, iss. 1, article no. 030014. DOI: 10.1063/1.5033613.
Yuan, X., He, Y., Wan, S., Qiu, M., & Jiang, H. Remote vibration monitoring and fault diagnosis system of synchronous motor based on internet of things technology. Artif. Intell. Edge Comput. Mob. Inf. Syst., 2021, vol. 2021, article no. 3456624. DOI: 10.1155/2021/3456624.
Villacorta, J. J., del-Val, L., Martínez, R. D., Balmori, J.-A., Magdaleno, Á., López, G., Izquierdo, A., Lorenzana, A., & Basterra, L.-A. Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System. Sensors, 2021, vol. 21, article no.648. DOI: 10.3390/s21020648.
IEEE 1451.0-2007–IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats. CFAT-Common Functionality and TEDS Working Group. Available online: https://standards.ieee.org/ieee/1451.0/3441/ (accessed 12 March 2024).
Martínez, J., Asiain, D., & Beltrán, J. R. Self-Calibration Technique with Lightweight Algorithm for Thermal Drift Compensation in MEMS Accelerometers. Micromachines, 2022, vol. 13, article no. 584. DOI: 10.3390/mi13040584.
Bai, Y., Wang, X., Jin, X., Su, T., Kong, J., & Zhang, B. Adaptive filtering for MEMS gyroscope with dynamic noise model. ISA Trans., 2020, vol. 101, pp. 430-441. DOI: 10.1016/j.isatra.2020.01.030.
ISO 16063-11:1999, Methods for the Calibration of Vibration and Shock Transducers-Part 11: Primary Vibration Calibration by Laser Interferometry. International Organization for Standardization (ISO): Geneva, Switzerland, 1999. 27 p. Available online: https://www.iso.org/ru/standard/24951.html (accessed 12 March 2024).
Larsonnier, F., Rouillé, G., Bartoli, C., Klaus, L., & Begoff, P. Comparison on seismometer sensitivity following ISO 16063-11 standard. In Proceedings of the 19th International Congress of Metrology, Paris, France, 24–26 September 2019, article no. 27003. DOI: 10.1051/metrology/201927003.
Bilgic, E. Determination of Pulse Width and Pulse Amplitude Characteristics of Materials Used in Pendulum Type Shock Calibration Device. Acta Phys. Pol., 2017, vol. 132, pp. 857–860. DOI: 10.12693/APhysPolA.132.857.
IEEE Std 1554-2005, 1554-2005–IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis. IEE: Piscataway Township, NJ, USA, 2013. DOI: 10.1109/IEEESTD.2013.6673990.
Hayouni, M., Vuong, T.-H., & Choubani, F. Wireless IoT universal approach based on Allan variance method for detection of artificial vibration signatures of a DC motor’s shaft and reconstruction of the reference signal. IET Wirel. Sens. Syst. 2022, vol. 12, pp. 81–92. DOI: 10.1049/wss2.12038.
Kumari, S., Raj, R., & Komati, R. A Thing Speak IoT Based Vibration Measurement and Monitoring System Using an Accelerometer sensor. Int. J. Res. Appl. Sci. Eng. Technol., 2021, vol. 9, pp. 1249–1258. DOI: 10.22214/ijraset.2021.37599.
Koene, I., Klar, V., & Viitala, R. IoT connected device for vibration analysis and measurement. HardwareX, 2020, vol. 7, article no. e00109. DOI: 10.1016/j.ohx.2020.e00109.
Villarroel, A., Zurita, G., & Velarde, R. Development of a Low-Cost Vibration Measurement System for Industrial Applications. Machines, 2019, vol. 7, article no. 12. DOI: 10.3390/machines7010012.
Turkin, I., Leznovskyi, V., Zelenkov, A., Nabizade, A., Volobuieva, L., & Turkina, V. The Use of IoT for Determination of Time and Frequency Vibration Characteristics of Industrial Equipment for Condition-Based Maintenance. Computation, 2023, vol. 11, article no. 177. DOI: 10.3390/computation11090177.
IIS3DWB–Ultra-Wide Bandwidth, Low-Noise, 3-Axis Digital Vibration Sensor. Datasheet–Production Data. Available online: https://www.st.com/resource/en/datasheet/iis3dwb.pdf (accessed 12 March 2024).
Tragos, E. Z., Pöhls, H. C., Staudemeyer, R. C., Slamanig, D., Kapovits, A., Suppan, S., Fragkiadakis, A., Baldini, G., Neisse, R., Langendörfer, P., et al. Building the Hyperconnected Society. In Securing the Internet of Things, River Publishers: Aalborg, Denmark, 2015. Available online: https://www.researchgate.net/publication/289253024_Building_the_Hyperconnected_Society (accessed 12 March 2024).
Wilk, M. B. The Shapiro Wilk And Related Tests For Normality. 2015. Available online: https://math.mit.edu/~rmd/465/shapiro.pdf (accessed 12 March 2024).
DOI: https://doi.org/10.32620/aktt.2024.3.11