Optimization of energy consumption of the CubeSat on-board computer under real-time limitations
Abstract
Keywords
Full Text:
PDF (Українська)References
CubeSat Design Specification (1U – 12U). Rev 14.1. The CubeSat Program, Cal Poly SLO, 2022. 34 p. Available at: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf. (Accessed 28.04.2023).
Kulu, E. World's largest database of nanosatellites, over 4100 nanosats and CubeSats. Nanosats Database. Available at: https://www.nanosats.eu/#figures. (Accessed 29.11.2023).
Lashab, A., Yaqoob, M., Terriche, Y., Vasquez, J. C., & Guerrero, J. M. Space Microgrids: New Concepts on Electric Power Systems for Satellites. IEEE Electrification Magazine, 2020, vol. 8, Iss. 4, pp. 8-19. DOI: 10.1109/MELE.2020.3026436.
Villela, T., Costa, C. A., Brandão, A. M., Bueno, F. T., & Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. International Journal of Aerospace Engineering, 2019, vol. 2019, article no. 5063145. 13 p. DOI: 10.1155/2019/5063145.
Swartwout, M. CubeSat Database. Saint Louis University. Available at: https://sites.google.com/a/slu.edu/swartwout/cubesat-database (Accessed: 11.04.2023).
De, R., Abegaonkar, M. P., & Basu, A. Enabling Science with CubeSats – Trends and Prospects. IEEE Journal on Miniaturization for Air and Space Systems, 2022, vol. 3, no. 4, pp. 221-231. DOI: 10.1109/JMASS.2022.3209897.
Cappelletti, C., & Robson, D. 2 - CubeSat missions and applications. Cubesat Handbook. Academic Press, 2021, pp. 53-65. DOI: 10.1016/B978-0-12-817884-3.00002-3.
Liubimov, O., Turkin, I., Pavlikov, V., & Volobuyeva, L. Agile Software Development Lifecycle and Containerization Technology for CubeSat Command and Data Handling Module Implementation. Computation, 2023, vol. 11, iss. 9, article no. 182. DOI: 10.3390/computation11090182.
Seman, L. O., Rigo, C. A., Camponogara, E., Munari, P., & Bezerra, E. A. Improving energy aware nanosatellite task scheduling by a branch-cutand-price algorithm. Computers & Operations Research, 2023, vol. 158, article no. 106292. DOI: 10.1016/j.cor.2023.106292.
Arnold, S. S., Nuzzaci, R., & Gordon-Ross, A. Energy budgeting for CubeSats with an integrated FPGA. IEEE Aerospace Conference, Big Sky, MT, USA, 2012, pp. 1-14. DOI: 10.1109/AERO.2012.6187240.
Bernardo, V. P., Seman, L. O., Bezerra, E. A., & Ribeiro, B. F. Hardware-in-the-loop simulation of an on-board energy-driven scheduling algorithm for CubeSats. IEEE Embedded Systems Letters, 2024, vol. 16, iss. 1, pp. 69-72. DOI: 10.1109/LES.2023.3268575.
Rigo, C. A., Seman, L. O., Camponogara, E., Filho, E. M., & Bezerra, E. A. Task scheduling for optimal power management and quality-of-service assurance in CubeSats. Acta Astronautica, 2021, vol. 179, pp. 550-560. DOI: 10.1016/j.actaastro.2020.11.016.
Gerards, M. E. T., & Kuper, J. Optimal DPM and DVFS for frame-based real-time systems. ACM Trans. Archit. Code Optim, 2013, vol. 9, no. 4, pp. 1-23, article no. 41. DOI: 10.1145/2400682.2400700.
Bridges, C., Kenyon, S., Underwood, C., & Lappas, V. STRaND-1: The world's first smartphone nanosatellite. 2nd International Conference on Space Technology, Athens, Greece, 2011, pp. 1-3. DOI: 10.1109/ICSpT.2011.6064651.
Gueguen, C., & Merlhe, C. Fair energy efficient scheduler providing high system capacity for wireless networks. SN Appl. Sci., 2020, vol. 2, article no. 2116. DOI: 10.1007/s42452-020-03965-8.
Slongo, L. K., Martínez, S. V., Eiterer, B. V. B., Pereira, T. G., Bezerra, E. A., & Paiva, K. V. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization. Acta Astronautica, 2018, vol. 147, pp. 141-151. DOI: 10.1016/j.actaastro.2018.03.052.
Dobiáš, P., Casseau, E., & Sinnen, O. Online fault tolerant energy-aware algorithm for CubeSats. Sustainable Computing: Informatics and Systems, 2023, vol. 38, article no. 100853. DOI: 10.1016/j.suscom.2023.100853.
Mittal, S. A survey of techniques for improving energy efficiency in embedded computing systems. International Journal of Computer Aided Engineering and Technology, 2014, vol. 6, iss. 4, pp. 440-459. DOI: 10.1504/IJCAET.2014.065419.
Zidar, J., Matić, T., Aleksi, I., & Hocenski, Ž. Dynamic Voltage and Frequency Scaling as a Method for Reducing Energy Consumption in Ultra-Low-Power Embedded Systems. Electronics, 2024, vol. 13, no. 5, article no. 826. DOI: 10.3390/electronics13050826.
Ali, H., Tariq, U. U., Hardy, J., Zhai, X., Lu, L., Zheng, Y., Bensaali, F., Amira, A., Fatema, K., & Antonopoulos, N. A survey on system level energy optimisation for MPSoCs in IoT and consumer electronics. Comput. Sci. Rev., 2021, vol. 41, article no. 100416. DOI: 10.1016/j.cosrev.2021.100416.
Oliveira, G., & Lima, G. Scheduling and energy savings for small scale embedded FreeRTOS-based-real-time systems. Des Autom Embed Syst., 2023, vol. 27, pp. 3-29. DOI: 10.1007/s10617-023-09267-7.
Low Power Support: Tickless Idle Mode. Available at: https://www.freertos.org/low-power-tickless-rtos.html. (Accessed 28.04.2023).
Liu, C. L. J., & Layland, W. Scheduling Algorithms for Multiprogramming in Hard Real-Time Environment. Journal of the ACM, 1973, vol. 20, iss. 1, pp. 46-61. DOI: 10.1145/321738.321743.
Craig, K., Shakhsheer, Y., & Calhoun, B. H. Optimal power switch design for dynamic voltage scaling from high performance to subthreshold operation. Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED '12, July 2012, pp. 221-224. DOI: 10.1145/2333660.2333714.
Wolf, M. Chapter 5 - Processors and Systems. The Physics of Computing. Morgan Kaufmann, 2017, pp. 149-203. DOI: 10.1016/B978-0-12-809381-8.00005-5.
Atmel | SMART ARM-based Flash MCU DATASHEET. Available at: https://en.sekorm.com/doc/1455047.html. (Accessed 29.11.2023).
DOI: https://doi.org/10.32620/aktt.2024.3.10