Optimization of energy consumption of the CubeSat on-board computer under real-time limitations

Ihor Turkin, Oleksandr Liubimov, Volodymyr Zakharenko

Abstract


The object of this study was to study the energy consumption of the on-board computer of the CubeSat nanosatellite. The subject of this study is the on-board computer energy consumption model and its energy efficiency optimization method. The purpose of this work was to develop a model of an on-board computer’s energy consumption and a method of optimizing its energy efficiency, followed by an experimental verification of the effectiveness of this method. Task: justify the feasibility of finding new methods for optimizing the energy efficiency of the on-board computer of the CubeSat nanosatellite; prepare for the experiment, namely, develop a model of the on-board computer's energy consumption and a method of optimizing its energy efficiency, develop an experiment plan, and conduct measurement methodology; conduct experimental research and present the main results of the experiment; provide a meaningful interpretation of the obtained experimental results; generalize the conclusions, formulate the advantages and disadvantages of this work, and propose directions for further research. Conclusions. The power consumption of the on-board computers of nanosatellites must be reduced by hardware and software means. This study examines the effectiveness of known energy-saving methods for the authors' "Falco SBC 1.0" computing platform. These methods include dynamic frequency scaling (DFS), the race-to-dark (RTD) algorithm, and the combined algorithm, which proved to be the most effective. The results were idealized because they did not consider OS overhead. The proposed methodology can be used to evaluate other platforms. The following studies will consider the following areas: energy consumption in various processor energy-saving modes, overhead costs of multi-threaded real-time operating systems, and power management of non-processor components. Solving these problems remains an important area of scientific research.

Keywords


CubeSat; nanosatellite; efficiency; SBC; Falco; SSA; energy consumption model; power; ATSAMV71; DFS; RTD

References


CubeSat Design Specification (1U – 12U). Rev 14.1. The CubeSat Program, Cal Poly SLO, 2022. 34 p. Available at: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf. (Accessed 28.04.2023).

Kulu, E. World's largest database of nanosatellites, over 4100 nanosats and CubeSats. Nanosats Database. Available at: https://www.nanosats.eu/#figures. (Accessed 29.11.2023).

Lashab, A., Yaqoob, M., Terriche, Y., Vasquez, J. C., & Guerrero, J. M. Space Microgrids: New Concepts on Electric Power Systems for Satellites. IEEE Electrification Magazine, 2020, vol. 8, Iss. 4, pp. 8-19. DOI: 10.1109/MELE.2020.3026436.

Villela, T., Costa, C. A., Brandão, A. M., Bueno, F. T., & Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. International Journal of Aerospace Engineering, 2019, vol. 2019, article no. 5063145. 13 p. DOI: 10.1155/2019/5063145.

Swartwout, M. CubeSat Database. Saint Louis University. Available at: https://sites.google.com/a/slu.edu/swartwout/cubesat-database (Accessed: 11.04.2023).

De, R., Abegaonkar, M. P., & Basu, A. Enabling Science with CubeSats – Trends and Prospects. IEEE Journal on Miniaturization for Air and Space Systems, 2022, vol. 3, no. 4, pp. 221-231. DOI: 10.1109/JMASS.2022.3209897.

Cappelletti, C., & Robson, D. 2 - CubeSat missions and applications. Cubesat Handbook. Academic Press, 2021, pp. 53-65. DOI: 10.1016/B978-0-12-817884-3.00002-3.

Liubimov, O., Turkin, I., Pavlikov, V., & Volobuyeva, L. Agile Software Development Lifecycle and Containerization Technology for CubeSat Command and Data Handling Module Implementation. Computation, 2023, vol. 11, iss. 9, article no. 182. DOI: 10.3390/computation11090182.

Seman, L. O., Rigo, C. A., Camponogara, E., Munari, P., & Bezerra, E. A. Improving energy aware nanosatellite task scheduling by a branch-cutand-price algorithm. Computers & Operations Research, 2023, vol. 158, article no. 106292. DOI: 10.1016/j.cor.2023.106292.

Arnold, S. S., Nuzzaci, R., & Gordon-Ross, A. Energy budgeting for CubeSats with an integrated FPGA. IEEE Aerospace Conference, Big Sky, MT, USA, 2012, pp. 1-14. DOI: 10.1109/AERO.2012.6187240.

Bernardo, V. P., Seman, L. O., Bezerra, E. A., & Ribeiro, B. F. Hardware-in-the-loop simulation of an on-board energy-driven scheduling algorithm for CubeSats. IEEE Embedded Systems Letters, 2024, vol. 16, iss. 1, pp. 69-72. DOI: 10.1109/LES.2023.3268575.

Rigo, C. A., Seman, L. O., Camponogara, E., Filho, E. M., & Bezerra, E. A. Task scheduling for optimal power management and quality-of-service assurance in CubeSats. Acta Astronautica, 2021, vol. 179, pp. 550-560. DOI: 10.1016/j.actaastro.2020.11.016.

Gerards, M. E. T., & Kuper, J. Optimal DPM and DVFS for frame-based real-time systems. ACM Trans. Archit. Code Optim, 2013, vol. 9, no. 4, pp. 1-23, article no. 41. DOI: 10.1145/2400682.2400700.

Bridges, C., Kenyon, S., Underwood, C., & Lappas, V. STRaND-1: The world's first smartphone nanosatellite. 2nd International Conference on Space Technology, Athens, Greece, 2011, pp. 1-3. DOI: 10.1109/ICSpT.2011.6064651.

Gueguen, C., & Merlhe, C. Fair energy efficient scheduler providing high system capacity for wireless networks. SN Appl. Sci., 2020, vol. 2, article no. 2116. DOI: 10.1007/s42452-020-03965-8.

Slongo, L. K., Martínez, S. V., Eiterer, B. V. B., Pereira, T. G., Bezerra, E. A., & Paiva, K. V. Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization. Acta Astronautica, 2018, vol. 147, pp. 141-151. DOI: 10.1016/j.actaastro.2018.03.052.

Dobiáš, P., Casseau, E., & Sinnen, O. Online fault tolerant energy-aware algorithm for CubeSats. Sustainable Computing: Informatics and Systems, 2023, vol. 38, article no. 100853. DOI: 10.1016/j.suscom.2023.100853.

Mittal, S. A survey of techniques for improving energy efficiency in embedded computing systems. International Journal of Computer Aided Engineering and Technology, 2014, vol. 6, iss. 4, pp. 440-459. DOI: 10.1504/IJCAET.2014.065419.

Zidar, J., Matić, T., Aleksi, I., & Hocenski, Ž. Dynamic Voltage and Frequency Scaling as a Method for Reducing Energy Consumption in Ultra-Low-Power Embedded Systems. Electronics, 2024, vol. 13, no. 5, article no. 826. DOI: 10.3390/electronics13050826.

Ali, H., Tariq, U. U., Hardy, J., Zhai, X., Lu, L., Zheng, Y., Bensaali, F., Amira, A., Fatema, K., & Antonopoulos, N. A survey on system level energy optimisation for MPSoCs in IoT and consumer electronics. Comput. Sci. Rev., 2021, vol. 41, article no. 100416. DOI: 10.1016/j.cosrev.2021.100416.

Oliveira, G., & Lima, G. Scheduling and energy savings for small scale embedded FreeRTOS-based-real-time systems. Des Autom Embed Syst., 2023, vol. 27, pp. 3-29. DOI: 10.1007/s10617-023-09267-7.

Low Power Support: Tickless Idle Mode. Available at: https://www.freertos.org/low-power-tickless-rtos.html. (Accessed 28.04.2023).

Liu, C. L. J., & Layland, W. Scheduling Algorithms for Multiprogramming in Hard Real-Time Environment. Journal of the ACM, 1973, vol. 20, iss. 1, pp. 46-61. DOI: 10.1145/321738.321743.

Craig, K., Shakhsheer, Y., & Calhoun, B. H. Optimal power switch design for dynamic voltage scaling from high performance to subthreshold operation. Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED '12, July 2012, pp. 221-224. DOI: 10.1145/2333660.2333714.

Wolf, M. Chapter 5 - Processors and Systems. The Physics of Computing. Morgan Kaufmann, 2017, pp. 149-203. DOI: 10.1016/B978-0-12-809381-8.00005-5.

Atmel | SMART ARM-based Flash MCU DATASHEET. Available at: https://en.sekorm.com/doc/1455047.html. (Accessed 29.11.2023).




DOI: https://doi.org/10.32620/aktt.2024.3.10