Study of the dependence of accuracy in vehicles search on the size of the object using UAV images
Abstract
Keywords
Full Text:
PDFReferences
Bondžulić, B., Stojanović, N., Lukin, V., Stankevich, S. A., Bujaković, D., & Kryvenko, S. Target acquisition performance in the presence of JPEG image compression. Defence Technology, 2023. DOI: 10.1016/j.dt.2023.12.006.
Wang, L., Tang, J., & Liao, Q. A Study on Radar Target Detection Based on Deep Neural Networks. IEEE Sensors Letters, 2019, vol. 3, no. 3, article no. 7000504. DOI: 10.1109/LSENS.2019.2896072.
Yu, S. Sonar Image Target Detection Based on Deep Learning. Mathematical Problems in Engineering, 2022, vol. 2022, article no. 5294151. DOI: 10.1155/2022/5294151.
Zhao, M., Li, W., Li, L., Hu, J., Ma, P., & Tao, R. Single-Frame Infrared Small-Target Detection: A survey. IEEE Geoscience and Remote Sensing Magazine, 2022, vol. 10, no. 2, pp. 87-119. DOI: 10.1109/MGRS.2022.3145502.
Cox, T. H., Somers, I. & Fratello, D. J. Earth Observations and the Role of UAVs: A Capabilities Assessment. NASA, 2007. 346 p.
Boukoberine, M. N., Zhou, Z. & Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Applied Energy, 2019, vol. 255, paper no. 113823. DOI: 10.1016/j.apenergy.2019.113823.
Xiuling, Z., Huijuan, W., Yu, S., Gang, C., Suhua, Z. & Quanbo, Y. Starting from the structure: A review of small object detection based on deep learning. Image and Vision Computing, 2024, vol. 146, paper no. 105054. DOI: 10.1016/j.imavis.2024.105054.
Tsekhmystro, R., Rubel, O. & Lukin, V. Investigation of the effect of object size on accuracy of human localisation in images acquired from unmanned aerial vehicles. Aerospace Technic and Technology, 2024, no. 2, pp. 83-90. DOI: 10.32620/aktt.2024.2.09.
Tang, G., Ni, J., Zhao, Y., Gu, Y. & Cao, W. A Survey of Object Detection for UAVs Based on Deep Learning. Remote Sensing, 2024, vol. 16, no. 1, article no. 149. DOI: 10.3390/rs16010149.
Yamani, A., Alyami, A., Luqman, H., Ghanem, B. & Giancola, S. Active Learning for Single-Stage Object Detection in UAV Images. 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024, pp. 1849-1858. DOI: 10.1109/WACV57701.2024.00187.
Agrawal, P., Girshick, R. & Malik, J. Analyzing the Performance of Multilayer Neural Networks for Object Recognition. Computer Vision – ECCV 2014, 2014, vol. 8695, pp. 329–344. DOI: 10.1007/978-3-319-10584-0_22.
Ren, J. & Wang, Y. Overview of Object Detection Algorithms Using Convolutional Neural Networks. Journal of Computer and Communications, no. 10, pp. 115–132. DOI: 10.4236/jcc.2022.101006.
Khan, S. A., Lee, H. J. & Lim, H. Enhancing Object Detection in Self-Driving Cars Using a Hybrid Approach. Electronics, 2023, vol. 12, no. 13, article no. 2768. DOI: 10.3390/electronics12132768.
Padilla, R., Netto, S. L. & da Silva, E. A. B. A Survey on Performance Metrics for Object-Detection Algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 2020, pp. 237-242. DOI: 10.1109/IWSSIP48289.2020.9145130.
Tsekhmystro, R., Rubel, O. & Lukin, V. Study of methods for searching and localizing objects in images from aircraft using convolutional neural networks. Radioelectronic and Computer Systems, 2024, vol. 109, no. 1, pp. 87-98. DOI: 10.32620/reks.2024.1.08.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 658-666. DOI: 10.48550/arXiv.1902.09630.
Ting, K. M. Precision and Recall. Encyclopedia of Machine Learning, 2010. 781 p. DOI: 10.1007/978-0-387-30164-8_652.
Lian, J., Yuhang, Y., Linhui, L., Zhenghao, W. & Yafu, Z. Small Object Detection in Traffic Scenes Based on Attention Feature Fusion. Sensors, 2021, no. 9, article no. 3031. DOI: 10.3390/s21093031.
Rahman, S., Rony, J. H., Uddin, J. & Samad, M. A. Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography. Journal of Imaging, 2023, vol. 9, no. 10, article no. 216. DOI: 10.3390/jimaging9100216.
Girshick, R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448. DOI: 10.1109/ICCV.2015.169.
Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., & Ling, H. Detection and Tracking Meet Drones Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, vol. 44, no. 11, pp. 7380-7399. DOI: 10.1109/TPAMI.2021.3119563.
Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., & Tian, Q. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. European Conference on Computer Vision (ECCV), 2018, vol. 128, pp. 1141-1159. DOI: 10.1007/s11263-019-01266-1.
Wallach, D. & Goffinet, B. Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecological Modelling, 1989, vol. 44, pp. 299-306. DOI: 10.1016/0304-3800(89)90035-5.
Ruby, U., Theerthagiri, P., Jacob, J. & Vamsidhar, Y. Binary cross entropy with deep learning technique for Image classification. International Journal of Advanced Trends in Computer Science and Engineering, 2020, vol. 9, no. 4, pp. 5393-5397. DOI: 10.30534/ijatcse/2020/175942020.
Mao, A., Mohri, M. & Zhong, Y. Cross-Entropy Loss Functions: Theoretical Analysis and Applications. Proceedings of the 40th International Conference on Machine Learning, 2023, vol. 202, pp. 23803-23828. DOI: 10.48550/arXiv.2304.07288.
Robinson, H. & Monro, S. A Stochastic Approximation Method. The Annals of Mathematical Statistics, 1951, vol. 22, no. 3, pp. 400-407. DOI: 10.1214/aoms/1177729586.
Li, X., Wang, W., Wu, L., Chen, S., Hu, X., Li, J., Tang, J. and Yang, J. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS '20), 2020, article no. 1763. DOI: 10.48550/arXiv.2006.04388.
DOI: https://doi.org/10.32620/aktt.2024.3.08