Review and bibliometric study of CO2 supercritical energy cycles. Current state of research and development
Abstract
Keywords
Full Text:
PDF (Українська)References
Wright, S. A., Conboy, T. M., Radel, R. F., & Rochau, G. E. Modeling and experimental results for condensing supercritical CO2 power cycles. Technical Report: No. SAND2010-8840. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2011. 46 p. DOI: 10.2172/1030354.
Lock, A., & Bone, V. Off-design operation of the dry-cooled supercritical CO2 power cycle. Energy Conversion and Management, 2022, vol. 251, article no. 114903. DOI: 10.1016/j.enconman.2021.114903.
Lin, X., Li, X., Liu, H., Boczkaj, G., Cao, Y., & Wang, C. A review on carbon storage via mineral carbonation: Bibliometric analysis, research advances, challenge, and perspectives. Separation and Purification Technology, 2024, vol. 338, article no. 126558. DOI: 10.1016/j.seppur.2024.126558.
Huang, Y., Zheng, X., Wei, Y., He, Q., Yan, S., & Ji, L. Protonated amines mediated CO2 mineralization of coal fly ash and polymorph selection of CaCO3. Chemical Engineering Journal, 2022, vol. 450, part 2, article no. 138121. DOI: 10.1016/j.cej.2022.138121.
Liang, Y., Chen, W., Luo, X., Chen, J., Yang, Z., & Chen, Y. Multi-objective optimization of supercritical CO2 Brayton cycles for coal-fired power generation with two waste heat recovery schemes. Energy Conversion and Management, 2024, vol. 300, article no. 117962. DOI: 10.1016/j.enconman.2023.117962.
Allison, T. C., Smith, N. R., Pelton, R., Wilkes, J. C., & Jung, S. Experimental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles. Journal of Engineering for Gas Turbines and Power, 2019, vol. 141, iss. 6, article no. 061011. DOI: 10.1115/1.4041920.
Kwon, J. S., Son, S., Heo, J. Y., & Lee, J. I. Compact heat exchangers for supercritical CO2 power cycle application. Energy Conversion and Management, 2020, vol. 209, article no. 112666. DOI: 10.1016/j.enconman.2020.112666.
Reznicek, E. P., Hinze, J. F., Nellis, G. F., Anderson, M. H., & Braun, R. J. Simulation of the supercritical CO2 recompression Brayton power cycle with a high-temperature regenerator. Energy Conversion and Management, 2021, vol. 229, article no. 113678. DOI: 10.1016/j.enconman.2020.113678.
Jiang, P., Wang, B., Tian, Y., Xu, X., & Zhao, L. Design of a Supercritical CO2 Compressor for Use in a 1 MWe Power Cycle. ACS omega, 2021, vol. 6, iss. 49, pp. 33769-33778. DOI: 10.1021/acsomega.1c05023.
Vesely, L., Manikantachari, K. R. V., Vasu, S., Kapat, J., Dostal, V., & Martin, S. Effect of impurities on compressor and cooler in supercritical CO2 cycles. Journal of energy resources technology, 2019, vol. 141, iss. 1, article no. 012003. DOI: 10.1115/1.4040581.
Toni, L., Bisio, V., Milani, A., Biliotti, D., Bellobuono, E. F., Valente, R., Dozzini, M., Bigi, M. & Generini, G. Supercritical CO2 Compressor and Expander Design for Industrial Waste-Heat Valorization. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2023, vol. 12, article no. V012T28A016. DOI: 10.1115/GT2023-102558.
Wright, S. A., Radel, R. F., Vernon, M. E., Pickard, P. S., & Rochau, G. E. Operation and analysis of a supercritical CO2 Brayton cycle. Technical Report: No. SAND2010-0171, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2010. DOI: 10.2172/984129.
Allam, R. J., Palmer, M. R., Brown, G. W., Fetvedt, J., Freed, D., Nomoto, H., Itoh, M., Okita, N., & Jones, C. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide. Energy Procedia, 2013, vol. 37, pp. 1135-1149. DOI: 10.1016/j.egypro.2013.05.211.
Crespi, F., Gavagnin, G., Sánchez, D., & Martínez, G. S. Supercritical carbon dioxide cycles for power generation: A review. Applied energy, 2017, vol. 195, pp. 152-183. DOI: 10.1016/j.apenergy.2017.02.048.
Moore, J., Brun, K., Evans, N., & Kalra, C. Development of 1 MWe supercritical CO2 test loop. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2015, vol. 9, article no. V009T36A015. DOI: 10.1115/GT2015-43771.
Rinaldi, E., Pecnik, R., & Colonna, P. Computational fluid dynamic simulation of a supercritical CO2 compressor performance map. Journal of Engineering for Gas Turbines and Power, 2015, vol. 137, iss. 7, article no. 072602. DOI: 10.1115/1.4029121.
Wright, S. A., Radel, R. F., Vernon, M. E., Pickard, P. S., & Rochau, G. E. Operation and analysis of a supercritical CO2 Brayton cycle, Technical Report: No. SAND2010-0171, National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2010. DOI: 10.2172/984129.
Hosangadi, A., Weathers, T., Liu, J., Pelton, R., Wygant, K., & Wilkes, J. Numerical Predictions of Mean Performance and Dynamic Behavior of a 10 MWe sCO2 Compressor with Test Data Validation. Journal of Engineering for Gas Turbines and Power, 2022, vol. 144, iss. 12, article no. 121019. DOI: 10.1115/1.4055532.
Cich, S. D., Moore, J. J., Marshall, M., Hoopes, K., Mortzheim, J., & Hofer, D. Radial inlet and exit design for a 10 MWe SCO2 axial turbine. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2019, vol. 9, article no. V009T38A005. DOI: 10.1115/GT2019-90392.
Uysal, S. C., & Weiland, N. Turbomachinery design of an axial turbine for a direct fired sCO2 cycle. Energy Conversion and Management, 2022, vol. 267, article no. 115913. DOI: 10.1016/j.enconman.2022.115913.
Noall, J. S., & Pasch, J. J. Achievable efficiency and stability of supercritical CO2 compression systems. Supercritical CO2 Power Cycle Symposium, Pennsylvania Pittsburgh, 2014. 12 p. Available at: https://sco2symposium.com/papers2014/turbomachinery/51PPT-Noall.pdf. (accessed 12.2.2024).
Zhou, K., Wang, J., Xia, J., Guo, Y., Zhao, P., & Dai, Y. Design and performance analysis of a supercritical CO2 radial inflow turbine. Applied Thermal Engineering, 2020, vol. 167, article no. 114757. DOI: 10.1016/j.applthermaleng.2019.114757.
Tuite, L., Braun, J., & Paniagua, G. Optimization of a High Pressure Turbine Blade and Sector-Based Annular Rig Design for Supercritical CO2 Power Cycle Representative Testing. Journal of Engineering for Gas Turbines and Power, 2024, vol. 146, iss. 6, article no. 061017. DOI: 10.1115/1.4063956.
Hosseinpour, J., Messele, M., & Engeda, A. Design and development of a stable supercritical CO2 centrifugal compressor. Thermal Science and Engineering Progress, 2024, vol. 47, article no. 102273. DOI: 10.1016/j.tsep.2023.102273.
Redlich, O., & Kwong, J. N. S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chemical reviews, 1949, vol. 44, no. 1, pp. 233-244. DOI: 10.1021/cr60137a013.
Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical engineering science, 1972, vol. 27, iss. 6, pp. 1197-1203. DOI: 10.1016/0009-2509(72)80096-4.
Peng, D.-Y., & Robinson, D. B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, vol. 15, no. 1, pp. 59-64. DOI: 10.1021/i160057a011.
Aungier, R. H. A fast, accurate real gas equation of state for fluid dynamic analysis applications. Journal of Fluids Engineering, 1995, vol. 117, iss. 2, pp. 277-281. DOI: 10.1115/1.2817141.
Haghtalab, A., Mahmoodi, P., & Mazloumi, S. H. A modified Peng–Robinson equation of state for phase equilibrium calculation of liquefied, synthetic natural gas, and gas condensate mixtures. The Canadian Journal of Chemical Engineering, 1995, vol. 117, iss. 2, pp. 277-281. DOI: 10.1115/1.2817141.
Thamanavat, K., Sun, T., & Teja, A. S. High-pressure phase equilibria in the carbon dioxide+ pyrrole system. Fluid Phase Equilibria, 2009, vol. 275, iss. 1, pp. 60-63. DOI: 10.1016/j.fluid.2008.09.019.
Chapoy, A., Ahmadi, P., de Filho, O. C. V., & Jadhawar, P. Vapour-liquid equilibrium data for the carbon dioxide (CO2)+ carbon monoxide (CO) system. The Journal of Chemical Thermodynamics, 2020, vol. 150, article no. 106180. DOI: 10.1016/j.jct.2020.106180.
Wilson, G. M. Calculation of enthalpy data from a modified Redlich-Kwong equation of state. Advances in Cryogenic Engineering, 1966, vol. 11, pp. 392-400. DOI: 10.1007/978-1-4757-0522-5_43.
Span, R., & Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data, 1996, vol. 25, iss. 6, pp. 1509-1596. DOI: 10.1063/1.555991.
Cho, Ju., Shin, H., Cho, Jo., Kang, Y.-S., Ra, H.-S., Roh, C., & Baik, Y.-J. Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions. Frontiers in Energy, 2017, vol. 11, pp. 452-460. DOI: 10.1007/s11708-017-0504-4.
Cheng, W.-L., Huang, W.-X., & Nian, Y.-L. Global parameter optimization and criterion formula of supercritical carbon dioxide Brayton cycle with recompression. Energy Conversion and Management, 2017, vol. 150, pp. 669-677. DOI: 10.1016/j.enconman.2017.08.055.
Feher, E. G. The supercritical thermodynamic power cycle. Energy conversion, 1968, vol. 8, iss. 2, pp. 85-90. DOI: 10.1016/0013-7480(68)90105-8.
Dostal, V., Driscoll, M. J., & Hejzlar, P. A supercritical carbon dioxide cycle for next generation nuclear reactors. Advanced Nuclear Power Technology Program No. MIT-ANP-TR-100, Massachusetts Institute of Technology, Department of Nuclear Engineering, 2014. 307 p. Avaialable at: https://web.mit.edu/22.33/www/dostal.pdf. (accessed 12.02.2024).
Chang, Z., Zhao, Yu, Zhao, Y., Liu, G., Yang, Q., & Li, L. Research on recompression supercritical CO2 power cycle system considering performance and stability of main compressor. Applied Thermal Engineering, 2024, vol. 240, article no. 122283. DOI: 10.1016/j.applthermaleng.2023.122283.
Baltadjiev, N. D., Lettieri, C., & Spakovszky, Z. S. An investigation of real gas effects in supercritical CO2 centrifugal compressors. Journal of Turbomachinery, 2015, vol. 137, iss. 9, article no. 091003. DOI: 10.1115/1.4029616.
Pei, J., Zhao, Y., Zhao, M., Liu, G., Yang, Q., & Li, L. Effects of leading edge profiles on flow behavior and performance of supercritical CO2 centrifugal compressor. International Journal of Mechanical Sciences, 2022, vol. 229, article no. 107520. DOI: 10.1016/j.ijmecsci.2022.107520.
Gyarmathy, G. Nucleation of steam in high-pressure nozzle experiments. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, vol. 219, iss. 6, pp. 511-521. DOI: 10.1243/095765005X31388.
Shao, W., Yang, J., Wang, X., & Ma, Z. A real gas-based throughflow method for the analysis of SCO2 centrifugal compressors. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, vol. 234, iss. 10, pp. 1943-1958. DOI: 10.1177/0954406220902188.
Melissa Poerner, M., Beck, G., Musgrove, G., & Nolen, C. J. Understanding Wet Gas in a Supercritical Carbon Dioxide Cycle. The 5th International Symposium-Supercritical CO2 Power Cycles, March 28-31, 2016, San Antonio, Texas, 2016. 20 p. Available at: https://sco2symposium.com/papers2016/FluidMechanics/052paper.pdf. (accessed 12.01.2024).
Persico, G., Gaetani, P., Romei, A., Toni, L., Bellobuono, E. F., & Valente, R. Implications of phase change on the aerodynamics of centrifugal compressors for supercritical carbon dioxide applications. Journal of Engineering for Gas Turbines and Power, 2021, vol. 143, iss. 4, article no. 041007. DOI: 10.1115/1.4049924.
Hosangadi, A., Liu, Z., Weathers, T., Ahuja, V., & Busby, J. Modeling multiphase effects in CO2 compressors at subcritical inlet conditions. Journal of Engineering for Gas Turbines and Power, 2019, vol. 141, iss. 8, article no. 081005. DOI: 10.1115/1.4042975.
DOI: https://doi.org/10.32620/aktt.2024.3.07