Modeling the conditions for obtaining nanostructures during ion-plasma processing taking into account the quantum-mechanical properties of electrode material

Yurii Shyrokyi, Iurii Sysoiev, Yevhen Fesenko

Abstract


The subject matter of the article is the thermophysical and mechanical properties of surface layers of structural materials using a quantum-mechanical approach. The aim of the article is to adjust the parameters of the heat conductivity and thermoelasticity problem, considering all possible external and internal thermal effects and the quantum-mechanical description of the material structure, for electrodes in vacuum-arc nanostructuring. The task to be solved is to perform calculations using the developed model for a copper cathode considering the energy spent on the formation of nanoparticles during ion-plasma processing with oxygen ions. The methods used are methods for solving nonlinear problems. The following results were obtained. 1. The nature of the dependencies of the maximum temperature, the expected volume of nanostructures, and the maximum depth of their formation on the energy of oxygen ions with charges z = 1 and z = 2 matches previously known dependencies obtained by the classical model, but under quantum-mechanical consideration, the maximum temperature values increase by 15%, the volume of the nanocluster increases by 50%, and the maximum depth of its occurrence increases by 1.5 times. 2. When selecting the parameters of ion-plasma processing for obtaining nanostructures with ion energies 100...500 eV, the previously proposed model with general thermophysical and mechanical properties of structural materials can be used. 3. For technologies with ion energies in the range of 103...2∙103 eV, the previously proposed model can be used but with quantum-mechanical effects of structural materials considered. 4) For technologies with ion energies above 104 eV, calculations should be performed using both approaches (the classical approach and the approach considering the quantum-mechanical properties of structural materials), and after comparison, the variant whose calculation results are closest to the experimental results should be used. Conclusions. The proposed theoretical model using the thermophysical, mechanical, and quantum-mechanical properties of structural materials can be used to adjust the technological parameters of ion-plasma processing to assess the formation of nanostructures in protective and strengthening coatings.

Keywords


ions; electrons; thermal conductivity; heat capacity; nanostructures; ion energy

Full Text:

PDF

References


Vladoiu, R., Mandes, A., Dinca, V., Balasoiu, M., Soloviov, D., & Turchenko, V. Synthesis and Characterization of Complex Nanostructured Thin Films Based on Titanium for Industrial Applications. Materials, 2020, vol. 13, no. 2, article no. 399. DOI: 10.3390/ma13020399.

Kostyuk, G., Popov, V., Shyrokyi, Y., & Yevsieienkova, H. Efficiency and Performance of Milling Using Cutting Tools with Plates of a New Class. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021, pp. 598-608. DOI: 10.1007/978-3-030-68014-5_58.

Jain, M., Yadav, M., & Chaudhry, S. Copper oxide nanoparticles for the removal of divalent nickel ions from aqueous solution, Toxin Reviews, 2021, vol. 40, iss. 4, pp. 872-885. DOI: 10.1080/15569543.2020.1799407

Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., & Guo, Z. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, vol. 140, pp. 696-733. DOI: 10.1016/j.carbon.2018.09.006.

Giubileo, F., Di Bartolomeo, A., Iemmo, L., Luongo, G., Urban, & F. Field Emission from Carbon Nanostructures, Applied Sciences, 2018, vol. 8, iss. 4, article no. 526. DOI: 10.3390/app8040526.

Jafari, A., Tahani, K., Dastan, D., Asgary, S., Shi, Z., Yin, X.-T., Zhou, W.-D., Garmestani, H., & Ţălu, Ş. Ion implantation of copper oxide thin films; statistical and experimental results. Surfaces and Interfaces, 2020, vol. 18, article no. 100463. DOI: 10.1016/j.surfin.2020.100463.

Sreeju, N., Rufus, A., & Daizy P. Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. Journal of Molecular Liquids, 2017, vol. 242, pp. 690-700. DOI: 10.1016/j.molliq.2017.07.077.

Khan, M. A., Mahmood, H., Khan, M. S., Iqbal, T., Ahmad, P., Shafique, M., & Naeem, M. Microplasma-assisted synthesis of CuO nanostructures for catalytic degradation of organic dyes under solar irradiation. Journal of Solid State Electrochemistry, 2020, vol. 24, pp. 1123-1132. DOI: 10.1007/s10008-020-04602-5.

Košiček, M., Baranov, O., Zavašnik, J., & Cvelbar, U. In search of the limits of CuO thermal oxidation nanowire growth by combining experiment and theory. Applied Physics Letters, 2023, vol. 123, article no. 041601. DOI: 10.1063/5.0151293.

Dinca-Balan, V., Vladoiu, R., Mandes, A., & Prodan, G. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique. Journal of Physics D: Applied Physics, 2017, vol. 50, no. 43, article no. 435305, DOI: 10.1088/1361-6463/aa86dc.

Vladoiu, R., Tichý, M., Mandes, A., Dinca, V., & Kudrna, P. Thermionic Vacuum Arc – A Versatile Technology for Thin Film Deposition and Its Applications. Coatings, 2020, vol. 10, iss. 3, article no. 211. DOI: 10.3390/coatings10030211.

Breus, A., Abashin, S., Lukashov, I., Serdiuk, O., & Baranov, O. Synthesis of Copper Nanoparticles on Graphite Using Transient Glow-to-Arc Discharge Plasma. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes IV, InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham, 2022, pp. 264-273. DOI: 10.1007/978-3-031-16651-8_25.

Kostyk, K., Kostyk, V., Akimov, O., Kamchatna-Stepanova, K., & Shyrokyi, Y. Ensuring the High Strength Characteristics of the Surface Layers of Steel Products. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes IV, InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham, 2022, pp. 292-301. DOI: 10.1007/978-3-030-91327-4_29.

Breus, A., Abashin, S., & Serdiuk, O. Formation of 2D Carbon Nanosheets and Carbon-Shelled Copper Nanoparticles in Glow Discharge. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, 2024, pp. 256-264. DOI: 10.1007/978-3-031-42778-7_23.

Kostyuk, G., Nechyporuk, M., & Kostyk, K. Determination of Technological Parameters for Obtaining Nanostructures under Pulse Laser Radiation on Steel of Drone Engine Parts. 10th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2019, pp. 208-212. DOI: 10.1109/DESSERT.2019.8770053.

Ji, T., Wei, L., Wang, Y., Song, Y., Cai, H., Li, H., Ding, Y., & Yu, D. Influence of pulse frequency on discharge characteristics of micro-cathode arc thruster. Vacuum, 2022, vol. 196, article no. 110748. DOI: 10.1016/j.vacuum.2021.110748.

Ay, G. M. & Pat, S. Optical and Nanomechanical Properties of C Coated BN Thin Film Deposited by Thermionic Vacuum Arc Technique. Journal of Solid State Science and Technology, 2021, vol. 10, no. 10, article no. 103013. DOI: 10.1149/2162-8777/ac2f1f.

Elmas, S., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Demirkol, U., Özen, S., & Korkmaz, Ş. Determination of physical properties of graphene doped ZnO (ZnO:Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B: Condensed Matter, 2019, vol. 557, pp. 27-33. DOI: 10.1016/j.physb.2018.12.039.

Vladoiu, R., Mandes, A., Dinca-Balan, V., & Bursikova, V. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method. Journal of Nanomaterials, 2018, article no. 9632041, 10 p. DOI: 10.1155/2018/9632041.

Baranov, O. O., Fang, J., Rider, A. E., Kumar, S., & Ostrikov, K. Effect of Ion Current Density on the Properties of Vacuum Arc-Deposited TiN Coatings. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 12, pp. 3640–3644. DOI: 10.1109/TPS.2013.2286405.

Baranov, O., Romanov, M., Fang, J., Cvelbar, U., & Ostrikov, K. Control of ion density distribution by magnetic traps for plasma electrons. Journal of Applied Physics, 2012, vol. 112, no. 7, article no. 073302. DOI: 10.1063/1.4757022.

Schmool, D. Nanotechnologies: The Physics of Nanomaterials. Volume I: The Physics of Surfaces and Nanofabrication Techniques. 1st ed. Apple Academic Press Publ., 2021. 420 p. DOI: 10.1201/9781003100218.

Cao, G., & Wang Y. Nanostructures and Nanomaterials. Synthesis, Properties, and Applications. 2nd ed. World Scientific Publishing, 2011. 596 p. DOI: 10.1142/7885.

Kostyuk, G., Popov, V., & Kostyk, K. Volume of the Nanocluster and Its Depth at Effect of Ions of Different Energies, Varieties and Charges on Titanium Alloy VT-1. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, 2020, pp. 415-423. DOI: 10.1007/978-3-030-40724-7_42.

Kostyuk, G., Melkoziorova, O., Kostyuk, E., & Shirokiy, I. Prospects for producing nanostructures in the volume of parts under the action of plasma flows. Cutting & Tools in Technological Systems, 2020, no. 92, pp. 107-121. DOI: 10.20998/2078-7405.2020.92.12

Fulde, P., & Jensen, J. Electronic heat capacity of the rare-earth metals. American Physical Society Phys. Rev. B, 1983, vol. 27, iss. 7, article no. 4085. DOI: 10.1103/PhysRevB.27.4085.

Stauber, T., Peres, N. M. R., Guinea, F., & Castro Neto, A. H. Fermi liquid theory of a Fermi ring. American Physical Society Phys. Rev. B, 2007, vol. 75, iss. 11, article no. 115425. DOI: 10.1103/PhysRevB.75.115425.

Baym, G., & Pethick, C. Landau Fermi-Liquid Theory: Concepts and Applications. John Wiley & Sons, 2007. 211 p.

Grad, H. Principles of the Kinetic Theory of Gases. In: Flügge S. (eds) Thermodynamik der Gase / Thermodynamics of Gases. Handbuch der Physik / Encyclopedia of Physics. Springer, Berlin, Heidelberg, 1958, vol. 3/12, pp. 205-294. DOI: 10.1007/978-3-642-45892-7_3.

Wölfle, P. Quasiparticles in condensed matter systems. Reports on Progress in Physics, 2018, vol. 81, no. 3, article no. 032501. DOI: 10.1088/1361-6633/aa9bc4.




DOI: https://doi.org/10.32620/aktt.2024.3.06