Modeling the conditions for obtaining nanostructures during ion-plasma processing taking into account the quantum-mechanical properties of electrode material
Abstract
Keywords
Full Text:
PDFReferences
Vladoiu, R., Mandes, A., Dinca, V., Balasoiu, M., Soloviov, D., & Turchenko, V. Synthesis and Characterization of Complex Nanostructured Thin Films Based on Titanium for Industrial Applications. Materials, 2020, vol. 13, no. 2, article no. 399. DOI: 10.3390/ma13020399.
Kostyuk, G., Popov, V., Shyrokyi, Y., & Yevsieienkova, H. Efficiency and Performance of Milling Using Cutting Tools with Plates of a New Class. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2021, pp. 598-608. DOI: 10.1007/978-3-030-68014-5_58.
Jain, M., Yadav, M., & Chaudhry, S. Copper oxide nanoparticles for the removal of divalent nickel ions from aqueous solution, Toxin Reviews, 2021, vol. 40, iss. 4, pp. 872-885. DOI: 10.1080/15569543.2020.1799407
Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., & Guo, Z. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon, 2018, vol. 140, pp. 696-733. DOI: 10.1016/j.carbon.2018.09.006.
Giubileo, F., Di Bartolomeo, A., Iemmo, L., Luongo, G., Urban, & F. Field Emission from Carbon Nanostructures, Applied Sciences, 2018, vol. 8, iss. 4, article no. 526. DOI: 10.3390/app8040526.
Jafari, A., Tahani, K., Dastan, D., Asgary, S., Shi, Z., Yin, X.-T., Zhou, W.-D., Garmestani, H., & Ţălu, Ş. Ion implantation of copper oxide thin films; statistical and experimental results. Surfaces and Interfaces, 2020, vol. 18, article no. 100463. DOI: 10.1016/j.surfin.2020.100463.
Sreeju, N., Rufus, A., & Daizy P. Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. Journal of Molecular Liquids, 2017, vol. 242, pp. 690-700. DOI: 10.1016/j.molliq.2017.07.077.
Khan, M. A., Mahmood, H., Khan, M. S., Iqbal, T., Ahmad, P., Shafique, M., & Naeem, M. Microplasma-assisted synthesis of CuO nanostructures for catalytic degradation of organic dyes under solar irradiation. Journal of Solid State Electrochemistry, 2020, vol. 24, pp. 1123-1132. DOI: 10.1007/s10008-020-04602-5.
Košiček, M., Baranov, O., Zavašnik, J., & Cvelbar, U. In search of the limits of CuO thermal oxidation nanowire growth by combining experiment and theory. Applied Physics Letters, 2023, vol. 123, article no. 041601. DOI: 10.1063/5.0151293.
Dinca-Balan, V., Vladoiu, R., Mandes, A., & Prodan, G. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique. Journal of Physics D: Applied Physics, 2017, vol. 50, no. 43, article no. 435305, DOI: 10.1088/1361-6463/aa86dc.
Vladoiu, R., Tichý, M., Mandes, A., Dinca, V., & Kudrna, P. Thermionic Vacuum Arc – A Versatile Technology for Thin Film Deposition and Its Applications. Coatings, 2020, vol. 10, iss. 3, article no. 211. DOI: 10.3390/coatings10030211.
Breus, A., Abashin, S., Lukashov, I., Serdiuk, O., & Baranov, O. Synthesis of Copper Nanoparticles on Graphite Using Transient Glow-to-Arc Discharge Plasma. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes IV, InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham, 2022, pp. 264-273. DOI: 10.1007/978-3-031-16651-8_25.
Kostyk, K., Kostyk, V., Akimov, O., Kamchatna-Stepanova, K., & Shyrokyi, Y. Ensuring the High Strength Characteristics of the Surface Layers of Steel Products. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes IV, InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham, 2022, pp. 292-301. DOI: 10.1007/978-3-030-91327-4_29.
Breus, A., Abashin, S., & Serdiuk, O. Formation of 2D Carbon Nanosheets and Carbon-Shelled Copper Nanoparticles in Glow Discharge. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham, 2024, pp. 256-264. DOI: 10.1007/978-3-031-42778-7_23.
Kostyuk, G., Nechyporuk, M., & Kostyk, K. Determination of Technological Parameters for Obtaining Nanostructures under Pulse Laser Radiation on Steel of Drone Engine Parts. 10th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2019, pp. 208-212. DOI: 10.1109/DESSERT.2019.8770053.
Ji, T., Wei, L., Wang, Y., Song, Y., Cai, H., Li, H., Ding, Y., & Yu, D. Influence of pulse frequency on discharge characteristics of micro-cathode arc thruster. Vacuum, 2022, vol. 196, article no. 110748. DOI: 10.1016/j.vacuum.2021.110748.
Ay, G. M. & Pat, S. Optical and Nanomechanical Properties of C Coated BN Thin Film Deposited by Thermionic Vacuum Arc Technique. Journal of Solid State Science and Technology, 2021, vol. 10, no. 10, article no. 103013. DOI: 10.1149/2162-8777/ac2f1f.
Elmas, S., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Demirkol, U., Özen, S., & Korkmaz, Ş. Determination of physical properties of graphene doped ZnO (ZnO:Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B: Condensed Matter, 2019, vol. 557, pp. 27-33. DOI: 10.1016/j.physb.2018.12.039.
Vladoiu, R., Mandes, A., Dinca-Balan, V., & Bursikova, V. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method. Journal of Nanomaterials, 2018, article no. 9632041, 10 p. DOI: 10.1155/2018/9632041.
Baranov, O. O., Fang, J., Rider, A. E., Kumar, S., & Ostrikov, K. Effect of Ion Current Density on the Properties of Vacuum Arc-Deposited TiN Coatings. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 12, pp. 3640–3644. DOI: 10.1109/TPS.2013.2286405.
Baranov, O., Romanov, M., Fang, J., Cvelbar, U., & Ostrikov, K. Control of ion density distribution by magnetic traps for plasma electrons. Journal of Applied Physics, 2012, vol. 112, no. 7, article no. 073302. DOI: 10.1063/1.4757022.
Schmool, D. Nanotechnologies: The Physics of Nanomaterials. Volume I: The Physics of Surfaces and Nanofabrication Techniques. 1st ed. Apple Academic Press Publ., 2021. 420 p. DOI: 10.1201/9781003100218.
Cao, G., & Wang Y. Nanostructures and Nanomaterials. Synthesis, Properties, and Applications. 2nd ed. World Scientific Publishing, 2011. 596 p. DOI: 10.1142/7885.
Kostyuk, G., Popov, V., & Kostyk, K. Volume of the Nanocluster and Its Depth at Effect of Ions of Different Energies, Varieties and Charges on Titanium Alloy VT-1. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., & Pavlenko, I. (eds) Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, 2020, pp. 415-423. DOI: 10.1007/978-3-030-40724-7_42.
Kostyuk, G., Melkoziorova, O., Kostyuk, E., & Shirokiy, I. Prospects for producing nanostructures in the volume of parts under the action of plasma flows. Cutting & Tools in Technological Systems, 2020, no. 92, pp. 107-121. DOI: 10.20998/2078-7405.2020.92.12
Fulde, P., & Jensen, J. Electronic heat capacity of the rare-earth metals. American Physical Society Phys. Rev. B, 1983, vol. 27, iss. 7, article no. 4085. DOI: 10.1103/PhysRevB.27.4085.
Stauber, T., Peres, N. M. R., Guinea, F., & Castro Neto, A. H. Fermi liquid theory of a Fermi ring. American Physical Society Phys. Rev. B, 2007, vol. 75, iss. 11, article no. 115425. DOI: 10.1103/PhysRevB.75.115425.
Baym, G., & Pethick, C. Landau Fermi-Liquid Theory: Concepts and Applications. John Wiley & Sons, 2007. 211 p.
Grad, H. Principles of the Kinetic Theory of Gases. In: Flügge S. (eds) Thermodynamik der Gase / Thermodynamics of Gases. Handbuch der Physik / Encyclopedia of Physics. Springer, Berlin, Heidelberg, 1958, vol. 3/12, pp. 205-294. DOI: 10.1007/978-3-642-45892-7_3.
Wölfle, P. Quasiparticles in condensed matter systems. Reports on Progress in Physics, 2018, vol. 81, no. 3, article no. 032501. DOI: 10.1088/1361-6633/aa9bc4.
DOI: https://doi.org/10.32620/aktt.2024.3.06