Determining the influence of roughness and tip clearance on the axial multistage compressor characteristics

Vadym Datsenko

Abstract


The operation of gas turbine engines inevitably increases the blade roughness and tip clearance in multistage axial compressors. The result is an increase in its thermogasodynamic parameters. The reason for the increase in the roughness of the blades and the tip clearance can be various factors: clogging of the flow part of the compressor (adhesion and deposition of dust on the surface of the blades), erosion due to the arrival of hard sand grains in the flow part, etc. The subject of this study is thermogasodynamic processes in the flow part of a multistage axial compressor, based on the presence of flow part removal. The goal is to develop a methodology for forecasting and researching the influence of the blade surface roughness and increased tip clearance on the overall characteristics of a multistage axial compressor. A twelve-stage axial compressor was used as the research object. The guiding vanes of the first four stages and the inlet guiding vanes depend on the rotation frequency. As a result, it was not possible to investigate the influence of the surface roughness of the blades and the increased tip clearance on the overall characteristics of the multistage axial compressor. The calculation of the characteristics of an axial multistage compressor with simulation of different levels of roughness and increased tip clearance in comparison with its initial values and obtained several indicators of changes in thermogasodynamic parameters and characteristics of the compressor with changes in roughness (ks = 3 μm, ks = 20 μm, ks = 40 μm) was performed. and tip clearance (Δr=1%, Δr=2%, Δr=5%). The scientific and practical novelty of the obtained results arises from the following: the method of calculating the thermogasdynamic parameters and characteristics of an axial multistage compressor has been improved, which makes it possible to evaluate the effect of the roughness of the surfaces of the blades and the increased tip clearance; new data were obtained regarding the change in the compressor characteristics at different levels of roughness and the size of the tip clearance.

Keywords


axial multistage compressor; tip clearance; surface roughness; compressor characteristics

References


Zhou, E., Lei, P., Fan, C., Zhang, W., Liu, K., Cheng, S. Effects of the Reynolds Number on the Efficiency and Stall Mechanisms in a Three-stage Axial Compressor. Journal of Applied Fluid Mechanics, 2024, vol. 17, iss. 6, pp. 1306-1321. DOI: 10.47176/jafm.17.6.2309.

Malhotra, A., Goswami, S., & Pradeep, A. M. Impact of surface roughness on gas turbine engine fan and compressor rotor. Journal of Mechanical Science and Technology, 2024, vol. 37, pp. 2171–2177. DOI: 10.1007/s12206-023-2104-z.

Bammert, K., & Woelk, G. The influence of the blading surface roughness on the aerodynamic behavior and characteristic of an axial compressor. Journal of Engineering for Gas Turbines and Power, 1980, no. 102 (2), pp. 283–287. DOI: 10.1115/1.3230249.

Doroshenko, E. V. Vlyyanye abrazyvnoho yznosa lopatok na effektyvnost' lopatochnoho ventsa stupeny osevoho kompressora [Abrasive Wear Improving of Blades on Efficiency of Blade Row of Axial-flow Compressor Stage]. Problemy tertya ta znoshuvannya, 2016, no. 2, pp. 56-61. Available at: http://nbuv.gov.ua/UJRN/Ptz_2016_2_9. (accessed 19.03.2024).

Back, S. C., Hobson, G. V., Song, S. J., & Millsaps, K. T. Effects of Reynoldsnumber and surface roughness magnitude and location oncompressor cascade performance. Journal of Turbomachinery, 2012, no. 134 (5), pp. 1–6. DOI: 10.1115/1.4003821.

Gbadebo, S. A., Hynes, T. P., Cumpsty, N. A. Influence of surface roughness on three-dimensional separation in axial compressors. Journal of Turbomachinery, 2004, no. 126, pp. 455-463. DOI: 10.1115/1.1791281.

Teng, X., Chu, W., Zhang, H., Liu, K., & Li, J. The Influence of Geometry Deformation on a Multistage Compressor. Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, Oslo, June 11-15, 2018, GT2018-75935. 12 p. DOI: 10.1115/GT2018-75935.

Roberts, W. B., Thorp, S., Prahst, P. S., & Strazisar, A. J. The Effect of Ultrapolish on a Transonic Axial Rotor. Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, Reno, June 6–9, 2005, GT2005-69132. 7 р. DOI: 10.1115/GT2005-69132.

Koch, C. C., & Smith, L. H. Loss Sources and Magnitudes in Axial-Flow Compressors. Journal of Engineering for Gas Turbines and Power, 1976, no. 98(3), pp. 411-424. DOI: 10.1115/1.3446202.

Aldi, N., Morini, M., Pinelli, M., Spina, P., Suman, A., & Venturini, M. Performance evaluation of non-uniformly fouled axial compressor stages by means of computational fluid dynamic analyses. Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, San Antonio, June 3–7, 2013, GT2013-95580. 11 р. DOI: 10.1115/GT2013-94048.

Aldi, N., Morini, M., Pinelli, M., Spina, P., Suman, A., & Venturini, M. Numerical Analysis of the Effects of Surface Roughness Localization on the Performance of an Axial Compressor Stage. Energy Procedia, 2014, no. 45, pp. 1057–1066. DOI: 10.1016/j.egypro.2014.01.111.

Schlichting, H., Gersten, K. Boundary-Layer Theory. Ninth Edition. Berlin, Springer-Verlag Publ., 2017. 814 p.

Xuemin, Y., Jiankun, Z., & Chunxi, L. Effect of blade tip pattern on performance of a twin-stage variable-pitch axial fan. Energy, 2017, vol. 126, pp. 535-563. DOI: 10.1016/j.energy.2017.03.057.

Zhang, G., Li, Z., Cao, Z., Xu, Z., & Liu, W. Numerical investigation on the influence of nonuniform tip clearance on rotor tip-clearance flow field structure. Heliyon. 2024, vol. 10, iss. 3, article no. E25296. 17 p. DOI: 10.1016/j.heliyon.2024.e25296.

Song, M., Xie, H., Yang, B., & Zhang, S. Influence of Tip Clearance on Flow Characteristics of Axial Compressor. Processes, 2020, no. 8 (1445). 20 p. DOI: 10.3390/pr8111445.

Lu, H., Xiao, Y., Liu, Z., Yuan, Y., & Zhou, P. The effect of tip clearance on the rotor-stator interaction and noise of marine 1.5-stage compressor. Journal of Marine Engineering & Technology, 2023, vol. 23, iss. 1, pp. 33-46. DOI: 10.1080/20464177.2023.2255337.

Nechaev, Ju. N., & Fedorov, R. M. Teorija aviacionnyh gazoturbinnyh dvigatelej [Theory of aircraft gas turbine engines]. Moscow, Mashinostroenija Publ., 1977. 312 p.

Kurz, R., & Brun, K. Degradation in Gas turbine Systems. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, pp. 70-77. DOI: 10.1115/1.1340629.

Jüngst, M., Liedtke, S., Schiffer, H. P., & Becker, B. Aerodynamic Effects in a Transonic Compressor With Nonaxisymmetric Tip Clearance. Proceedings ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, Oslo, June 11–15, 2018, GT2018-75404. 13 р. DOI: 10.1115/GT2018-75404.

Boyko, L. G., Ershov, V. N., Girich, G. A., & Yanevych, V. N. Metody rascheta dvumernogo techenija v mnogostupenchatom osevom kompressore [Method of calculation of the two-dimensional flow in the multi-stage axial compressor]. Izv. Vuzov, 1989, no. 5, pp. 56-60.

Boyko, L. H., Barysheva, O. S., D'omin, O. Ye., Maksymov, Yu. P., & Fesenko, K. V. Metody raschetnoho yssledovanyya techenyy v osevykh y tsentrobezhnykh kompressorakh y rezul'taty ykh praktycheskoho yspol'zovanyya [Methods for Computational Research of Flows in Axial and Centrifugal Compressors and the Results of their practical use]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2011, no. 10 (87), pp. 63-69. Available at: http://dspace.library.khai.edu/xmlui/handle/123456789/2021. (accessed 19.06.2024).

Boyko, L. H., D'omin, O. Ye., Komp"yuterna prohrama «Prohramnyy kompleks PROK». Nomer svidotstva 107195 vid 11.08.2021.

Haaland, S. E. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow. Journal Fluids Engineering, 1983, vol. 105, pp. 89-90. DOI: 10.1115/1.3240948.

Strub, R. A., Bonciani, L., Borer, C. J., Casey, M. V., Cole, S. L., Cook, B. B., Kotzur, J., Simon, H., & Strite, M. A. Influence of the Reynolds Number on the Performance of Centrifugal Compressors. Journal of Turbomachinery, 1987, vol. 109, pp. 541–544. DOI: 10.1115/1.3262145.

Syverud, E., & Bakken, L. E. The impact of surface roughness on axial compressor performance deterioration. Proceedings of ASME Turbo Expo: Power for Land, Sea and Air, Barcelona, May 8–11, 2006, GT2006-90004. 11 p. DOI: 10.1115/GT2006-90114.

Lakshminarayana, B. Methods of predicting the tip clearance effects in axial flow turbomachinery. Journal Basic Engineering, 1970, vol. 92, pp. 467–482. DOI: 10.1115/1.3425036.

Boyko, L., & Datsenko, V. Determining the Influence of Compressor Flow Path Abrasive Wear on the Gas Turbine Engine Characteristics. Eastern-European Journal of Enterprise Technologies, 2023, vol. 2, no. 1 (122), pp. 12–24. DOI:10.15587/1729-4061.2023.275546.

Belyaev, D. V., Pykula, E. R., Talyzyna, V. S. Otsenka deformatsyy kharakterystyk osevoho kompressora v uslovyyakh dlytel'noy ekspluatatsyy [Assessment of the Deformation Characteristics of an Axial Compressor under long-term Operation Conditions]. Yzv. vuz. Avyatsyonnaya tekhnyka, 1993, no. 1, pp. 50-54.




DOI: https://doi.org/10.32620/aktt.2024.3.04