Analysis of systems for cooling liquid injection in turbine engine gas flow duct

Ruslan Tsukanov, Sergii Yepifanov

Abstract


The subject of this article is a system for cooling liquid injection in gas flow duct of aviation gas-turbine engine (GTE). The goal is to soften the acuteness of contradictions between economic and ecological requirements; ecological requirements and technological limitations; marketing and service life requirements, due to the application of a system for cooling liquid injection in gas flow duct of GTE. The tasks to be solved are: development of a classification, revealing the advantages and drawbacks of various technologies of systems for cooling liquid injection in the gas flow duct of GTE, analysis of the investigation methods used for cooling liquid injection systems, and analysis of the system application experience in various aircraft (A/C) and A/C projects. The methods used are: search of corresponding information sources on the Internet and analysis based on operational experience in the aviation branch. The following results were obtained: in terms of found information sources, classification of systems for cooling liquid injection in the gas flow duct of GTE has been developed; advantages and drawbacks of various cooling liquid injection technologies have been formulated; it was revealed that, three types of methods (experimental, computational fluid dynamic, and analytical) are used for cooling liquid injection system investigation; results of available research are briefly presented; application of cooling liquid injection systems in A/C with the purpose of extending the airplane flight envelop, increasing of aviation GTE thrust/power, and decreasing emissions of nitrogen oxides during takeoff have been analyzed. Conclusions. The scientific novelty of the results obtained is as follows: 1) information from numerous sources of literature that clarifies classification, advantages and drawbacks of various technologies of cooling liquid injection in the gas flow duct, development of these system investigations by various methods, and experience of these systems application both in real A/C, and in A/C projects were collected in the review article; 2) necessity in development of transport category A/C design methodology taking into account installation of the system for cooling liquid injection in the gas flow duct of GTE has been revealed. The goal and challenges of the following research in this field are outlined.

Keywords


gas-turbine engine; cooling liquid; cooling liquid injection system; fogging; wet compression; emissions of nitrogen oxides

Full Text:

PDF

References


Kyoto Protocol to the United Nations Framework Convention on Climate Change: official text. United Nations, 1998. 21 p. Available at: https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed 30.11.2023).

Daggett, D. L. Water misting & injection of commercial aircraft engines to reduce airport NOx: Technical memorandum NASA/CR-2004-212957, 2004. 82 p. Available at: https://ntrs.nasa.gov/citations/ 20040035576 (accessed 04.01.2024).

Waypoint 2050. Geneva, Air Transport Action Group, 2021. 110 p.

United States 2021 Aviation Climate Action Plan: National Aeronautics and Space Administration Authorization Act of 2022. FAA, 2022. 40 p.

Innovation for a Green Transition: 2022 Environmental Report. International Civil Aviation Organization, 2022. 414 p. Available at: https://www.icao.int/environmental protetion/Documents/EnvironmentalReports/2022/ICAO%20ENV%20Report%202022%20F4.pdf (accessed 30.11.2023).

Global Market Forecast 2023-2042. Airbus, 2023. 30 p. Available at: https://www.airbus.com/en/products-services/ commercial-aircraft/market/global-market-forecast/ (accessed 30.11.2023).

Daggett, D. L., Fucke, L., Hendricks, R. C., & Eames, D. J. H. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides. NASA/TM—2010-213179, NASA, 2010, Available at: https://ntrs.nasa.gov/api/citations/20100015629/downloads/20100015629.pdf (accessed 14.01.2024).

Hydrogen. A future fuel for aviation? Roland Berger GMBH. Munich Germany, 2020. 28 p.

Yepifanov, S., & Tsukanov, R. Analysis of Environmentally Friendly Commercial Aviation Development Ways. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2024, no. 1/193, pp. 4 21. DOI: 10.32620/aktt.2024.1.01.

Block, D. A., & Igie, U. Case For Exploring Compressor Water Injection For Airport Emission Reduction GT2017-64780. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition: Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems, Charlotte, USA, June 26 30, 2017, article no. GT2017 64780. pp. 26–30. DOI: 10.1115/GT2017-64780.

Rowe, M., & Ladd, G. Water injection for aircraft engines. SAE Journal (Transactions), 1946, vol. 54, no. 1, pp. 26 37. DOI: 10.4271/460192.

Clinton Wilcox, E., & Trout, A. M. Analysis of Thrust Augmentation of Turbojet Engines by Water Injection at Compressor Inlet Including Charts for Calculating Compression Processes with Water Injection: NACA Report 1006. 1950. 20 p. Available at: https://ntrs.nasa.gov/api/citations/19930092063/downloads/19930092063.pdf (accessed 05.01.2024).

Trout, A. M. Theoretical turbojet thrust augmentation by evaporation of water during compression as determined by use of a Mollier diagram: NACA Technical note 2104. June 1950. 52 p. Available at: https://ntrs.nasa.gov/api/citations/19930082907/downloads/19930082907.pdf (accessed 23.05.2024).

Hill, P. G. Aerodynamic and Thermodynamic Effects of Coolant Ingestion on Axial Flow Compressors. Aeronautical Quarterly, vol. 14, iss. 4, November, 1963, pp. 331-348. DOI: 10.1017/S0001925900002894.

Mourouzidis, C., Igie, U., Pilidis, P., & Singh, R. Water injection on aircraft engines: a performance, emissions and economic study. ISABE 22nd International Symposium on Air Breathing Engines. Phoenix, AZ, USA, 2015. 12 p. Available at: http://dspace.lib.cranfield.ac.uk/handle/1826/15176 (accessed 30.11.2023).

Daggett, D. L. Water Injection Feasibility for Boeing 747 Aircraft: Technical memorandum NASA/CR—2005-213656, 2005. 108 p. Available at: https://ntrs.nasa.gov/api/citations/20060004124/downloads/20060004124.pdf (accessed 04.01.2024).

Kofar-bai, D. G., Zhang, H., Zheng, Q., & Abdu, S. Flow Assessment on the Effects of Water Droplets on Rotor Region of Wet Compression. Transfer Phenomena in Fluid and Heat Flows III, Defect and Diffusion Forum, 2017, vol. 374, pp. 131 147. DOI: 10.4028/www.scientific.net/DDF.374.131.

Roumeliotis, I., & Mathioudakis, K. Evaluation of water injection effect on compressor and engine performance and operability. Applied Energy Journal, 2010, vol. 4, iss. 87, pp. 1207 1216. DOI: 10.1016/j.apenergy.2009.04.039.

Bhargava, R., & Meher-Homji, C. B., Parametric Analysis of Existing Gas Turbines With Inlet Evaporative and Overspray Fogging. Turbo Expo 2002, Parts A B, 4 A, 2002, vol. 4 (January 2005), pp. 387–401. DOI: 10.1115/1.1712980.

Utamura, M., Takehara, I., Horii, N., & Kuwahara, T. A New Gas Turbine Cycle for Economical Power Boosting. ASME ASIA 1997 Congres & Exhibition. Singapore, Sep 30-Oct, 2, 1997, article no. 97-AA-142. 10 p.

Tomita, J. T., Bontempo, L. P., & Barbosa, J. R., An Axial Flow Compressor for Operation With Humid Air and Water Injection. Journal of Eng. Gas Turbines Power, 2011, vol. 133, iss. 7, article no. 71703. DOI: 10.1115/GT2010-22996.

Sun, L., Zheng, Q., Li, Y., Luo, M., Wang, J., & Bhargava, R. K. Numerical Through Flow Simulation of a Gas Turbine Engine with Wet Compression. Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration. Copenhagen, Denmark. June 11–15, 2012. pp. 925-937. ASME. DOI.: 10.1115/GT2012-68846.

Cumpsty, N., Jet Propulsion a Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines. Cambridge University Press, Cambridge, 1997.

Daggett, D., Ortanderl, S., Eames, D., & Snyder, C. Water Injection: Disruptive Technology to Reduce Airplane Emissions and Maintenance Costs. SAE Technical Paper, 2004, article no. 2004-01-3108. 9 p. DOI: 10.4271/2004-01-3108.

Askeland, R., D., Fulay, P. P., & Wright, W. J., The Science and Engineering of Materials. Global Engineering, 2011. 949 p. Available at: https://anupturnedworld.files.wordpress.com/2016/06/askeland-the-science-and-engineering-of-materials.pdf (accessed 14.01.2024).

Kim, K. H., Ko, H. J., & Perez-Blanco, H. Analytical modeling of wet compression of gas turbine systems. Applied Thermal Engineering, 2011, vol. 31, iss. 5, pp. 834 840. DOI: 10.1016/j.applthermaleng.2010.11.002.

White, A. J., & Meacock, A. J. An Evaluation of the Effects of Water Injection on Compressor. Journal of Engineering for Gas Turbines and Power, 2004, vol. 126, pp. 748 754. DOI: 10.1115/1.1765125.

Balepin, V., Ossello, C., & Snyder, C., NOx Emission Reduction in Commercial Jets through Water Injection, AIAA 2002-3623, NASA/TM 2002 211978. 2002. Available at: https://ntrs.nasa.gov/citations/ 20020090894.pdf (accessed 05.01.2024).

Bhargava, R. K., Bianchi, M., Chaker, M., Melino, F., Peretto, A., & Spina, P. R. Gas Turbine Compressor Performance Characteristics During Wet Compression: Influence of Polydisperse Spray. Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. Orlando, FL USA. June 8–12, 2009, article no. GT2009-59907. 13 p. DOI: 10.1115/GT2009-59907.

Daggett, D. L., Fucke, L., Hendricks, R. C., & Eames, D. J. H. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides. 40th Joint Propulsion Conference and Exhibit cosponsored by the AIAA, ASME, SAE, and ASEE, Fort Lauderdale, Florida. July 11 14, 2004. 17 p. NASA/TM 2010-213179. Available at: https://ntrs.nasa.gov/api/citations/20100015629/ downloads/20100015629.pdf (accessed 30.11.2023).

Daggett, D. L., Ortanderl, S., Eames, D., & Berton, J. J. Revisiting Water Injection for Commercial Aircraft. World Aviation Congress & Exposition: Turbine Engine Technologies, Nov. 2004, Reno, NV, USA. 2004-01-3108. 8 p. Available at: https://www.researchgate.net/publication/287645497 (accessed 30.11.2023).

Bahr, D. W., & Lyon, T. F. NOx Abatement In Aircraft-Derivative Turbine Engines. American Society of Mechanical Engineering, 1984, 84-NaN-103.

Walsh, P. P., & Fletcher, P. Gas Turbine Performance. Blackwell Science, Oxford, 2004. 658 p.

Becker, A., & Hartford, E., Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines. Technical report NASA/CR 2006 213871, 2006. 35 p. Available at: https://ntrs.nasa.gov/api/citations/20060012147/downloads/20060012147.pdf (accessed 14.01.2024).

Urbach, H. B., Knauss, D. T., Wallace, B. L., Emory, J., Frese, J., & Bishop, J. W. Water injection into navy gas-turbine combustors to reduce NOx emissions. International Gas Turbine & Aerospace Congress & Exhibition, Stockholm, Sweden, June 2 5, 1998, article no. 98 GT 298. 12 p.

Tudosie, A. N. Aircraft Gas-Turbine Engine with Coolant Injection for Effective Thrust Augmentation as Controlled Object. IntechOpen, Aircraft Technology, pp. 77 103, 2018. DOI: 10.5772/intechopen.76856.

Ulitenko, Yu. Loginov, V., Kravchenko, I., Popov, V., Rasstrygin, O., & Yelans’ky, O. Improving the Efficiency of an Aircraft Power Plant with a Turboprop Engine Based on Water-Methanol Mixture Injection. Eastern-European Journal of Enterprise Technologies, 2022, no. 2/1 (116), pp. 6–15. DOI: 10.15587/1729-4061.2022.254277.

Chaker, M., Meher-Homji, C. B., & Mee, T. Inlet Fogging of Gas Turbine Engines – Part A: Fog Droplet Thermodynamics, Heat Transfer And Practical Considerations. Proceedings of ASME Turbo Expo 2002. Amsterdam, June 3-6, 2002, article no. 2002-GT-30562, pp. 413 428. DOI: 10.1115/1.1712981.

Chaker, M., Meher-Homji, C. B., Mee, T. R. III, Inlet Fogging of Gas Turbine Engines — Part B: Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing. Proceedings of ASME Turbo Expo 2002, Amsterdam, The Netherlands, June 3-6, 2002, ASME Paper No: 2002-GT-30563.

Petukhov, I. I., Minyachikhin, A. V., Zelenskii, R. L., Zhemanyuk P. D., Sorogin F. G., & Taran, A. I. Effektivnost' gazoturbinnogo privoda s okhlazhdeniem tsiklovogo vozdukha [Efficiency of gas-turbine drive with cooling of cycle air]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2004, no. 8/16, pp. 13-15.

Roumeliotis, I., Mathioudakis K. Water Injection Effects on Compressor Stage Operation. Journal of Engineering for Gas Turbines and Power, 2007, vol. 129, iss. 3, PP. 778 784. DOI: 10.1115/1.2718223.

Sorogin, F. G., Basov, Yu. F., Zhe¬ma¬nyuk, P. D., Trofimov, V. P., Minya¬chikhin, A. V., Petukhov, I. I., & Shakhov, Yu. V. Analiz effektivnosti GTP D-336-2 s raspylitel'noi sistemoi okhlazhdeniya tsiklovogo vozdukha [Effectiveness Analysis of the D-336-2 GTU with Cyclic Air Evaporative Fog Cooling System]. Vestnik dvigatelestroeniya – Engine-designing bulletin, 2011, no. 9/86, pp. 147–151.

Bettocchi, R., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., & Torsello, G. Set Up of an Experimental Facility for the Investigation of Wet Compression on a Multistage Compressor. Proceedings of ASME Turbo Expo 2010: Wet Gas Compression and Multi-phase Pumping. Glasgow, UK, June 14 18, 2010. Article no. GT2010-22451, pp. 673-683. DOI: 10.1115/GT2010-22451.

Sorogin, F. G., Basov, Yu. F., Shakhov, Yu. V., Petukhov, I. I., & Minyachikhin, A. V. Analiz effektivnosti GTP D-336-2 s otborom vozdukha dlya raspylitel''noi sistemy okhlazhdeniya [Effectiveness Analysis of the D-336-2 GTU with Cyclic Air Recusation For Spray Cooling System]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2012, no. 8/95, pp. 47-51.

Favorskii, O. N., Alekseev, V. B., Zalkind, V. I., Zeigarnik, Y. A., Ivanov, P. P., Marinichev, D. V., Nizovskii, V. L., & Nizovskii, L. V. Experimentally Studying TV3-117 Gas Turbine Unit Characteristics at Superheated Water Injection into a Compressor. Thermal Engineering, 2014, vol. 61, iss. 5, pp. 376-384. DOI: 10.1134/S0040601514050024.

Sorogin, F. G., Zhemanyuk, P. D., Trofimov, V. P., Shakhov, Y. V., Petukhov, I. I., & Minyachikhin, A. V. Eksperimental''noe issledovanie raspylitel''noi sistemy okhlazhdeniya tsiklovogo vozdukha GTP [Experimental Investigation of the Gas Turbine Unit Cyclic Air Spray Cooling System]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2015, no. 8/125, PP. 70 74.

Burtsev, G. N., Run'ko, V. V., Shleynikov, N. V., Shevelev, D. V., & Gridchin, N. V. Eksperimental''noe issledovanie vliyaniya vpryska vody na parametry gazoturbinnoi ustanovki maloi moshchnosti. [Experimental Investigation of the Effect of Water Injection on Low-Power Gas Turbine Plant Parameters]. Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroenie – Herald of the Bauman Moscow State Technical University, Mechanical Engineering, 2017, vol. 5, pp. 122–131. DOI: 10.18698/0236-3941-2017-5-122-131.

Petukhov, I. I., Sorogin, F. G., Shakhov, Yu. V., & Minyachikhin, A. V. Energeticheskaya effektivnost' GTP semeistva AI-336 s raspylitel'noi sistemoi okhlazhdeniya tsiklovogo vozdukha [Power Efficiency of the Gas Turbine Drive of an AI-336 set with the Spraying-Type Cycle Air Cooling System]. Bulletin of NTU "KhPI". Series: Power and heat engineering processes and equipment, 2017, no. 11/1233, pp. 55–63, DOI: 10.20998/2078-774X.2017.11.09.

Balajti, P., & Beneda, K. Experimental Study on the Effect of Water Injection on a Micro Turbojet Engine. Repüléstudományi közlemények, 2021, vol. 3, pp. 97–109. DOI: 10.32560/rk.2021.3.8.

Barakat, E., Jin, T., Tong, X., Ma, Ch., & Wang, G. Experimental investigation of saturated fogging and overspray influence on part-load micro gas turbine performance. Applied Thermal Engineering. Volume 219, Part B, 25 January 2023, article no. 119505. DOI: 10.1016/j.applthermaleng.2022.119505.

Hashim, H. S., Kassim, M. S., & Alwan, R. A. Investigation of Inlet Air Fogging as a Heat Transfer Enhancement Technique for Gas Turbines. International Journal of Heat and Technology, vol. 41, no. 6, December, 2023, pp. 1453-1460. DOI: 10.18280/ijht.410607.

Benini, E., Pandolfo, S., & Zoppellari, S. Reduction of NO emissions in a turbojet combustor by direct water/steam injection: numerical and experimental assessment. Applied Thermal Engineering, Elsevier, 2009, vol. 29, iss. 17-18. 24 p. DOI: 10.1016/j.applthermaleng.2009.06.004.

Wang, J., Zheng, Q., Sun, L., & Luo, M. The Effective Positions to Inject Water into the Cascade of Compressor. Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration. Copenhagen, Denmark. June 11–15, 2012, pp. 979-992. ASME. DOI: 10.1115/GT2012-69158.

Roumeliotis, I., Alexiou, A., Aretakis, N., Sieros, G., & Mathioudakis, K. Development and Integration of Rain Ingestion Effects in Engine Performance Simulations. Proceedings of ASME Turbo Expo 2014. Düsseldorf, Germany. June 16–20, 2014, article no. GT2014-26443. 11 p. DOI: 10.1115/1.4028545.

Liu, C., Li, X., Zhang, H., & Zheng, Q. Heat and Mass Transfer Characteristics of Water Droplets in Wet Compression Process. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration Applications; Organic Rankine Cycle Power Systems. Charlotte, North Carolina, USA. June 26–30, 2017. V003T23A003. DOI: 10.1115/GT2017-63516.

Sexton, M. R., Urbach, H. B., & Knauss, D. T. Evaporative compressor cooling for NOx Supression and Enhanced Engine Performance for Naval Gas Turbine Propulsion Plants. International Gas Turbine & Aeroengine Congress & Exhibition. Stockholm, Sweden, June 2 5, 1998, article no. 98-GT 332. 10 p.

Chaker, M, Meher-Homji, C. B, & Mee, T, III. Inlet Fogging of Gas Turbine Engines: Part C – Fog Behavior in Inlet Ducts, CFD Analysis and Wind Tunnel Experiments. Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 4: Turbo Expo 2002, Parts A and B. Amsterdam, Netherlands. June 3–6, 2002, pp. 443-455. DOI: 10.1115/GT2002-30564.

Zheng, Q., Sun, Y., Li, S., & Wang, Y. Thermodynamic Analyses of Wet Compression Process in the Compressor of Gas Turbine. Journal of Turbomachinery, 2003, vol. 125, iss. 3, pp. 489 496. DOI: 10.1115/1.1575254.

Sanaye, S., Rezazadeh, H., Aghazeynali, M., Samadi, M., Mehranian, D., & Ahangaran, M. K. Effects of Inlet Fogging and Wet Compression on Gas Turbine Performance. Proceedings of ASME Turbo Expo 2006: Power for Land, Sea and Air. Barcelona, Spain. May 8-11, 2006, article no. GT2006-90719. DOI: 10.1115/GT2006-90719.

Minyachikhin, A. V., Petukhov, I. I., Sorogin, F. G., & Turna, R. Yu. Primenenie isparitel'nykh panelei dlya sistemy okhlazhdeniya vkhodnogo vozdukha gazoturbinnogo privoda. [Evaporation panels application for inlet air cooling system of gas turbine unit]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2006, no. 7/33, pp. 21 24.

Bagnoli, M., Bianchi, M., Melino, F., & Spina, P. R. Development and Validation of a Computational Code for Wet Compression Simulation of Gas Turbines. Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy. Barcelona, Spain. May 8–11, 2006, pp. 641-649. ASME. DOI: 10.1115/GT2006-90342.

Basov, Yu. F. Zhemanyuk, P. D., Minyachikhin, A. V., Petukhov, I. I., Sorogin, F. G., & Shakhov, Yu. V. Raspylitel'nye sistemy okhlazhdeniya tsiklovogo vozdukha gazoturbinnogo privoda i ikh effektivnost' [Spray-Type Systems of the Gas Turbine Plant Cycle Air Cooling And Its Efficiency]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2009, no. 7/64, pp. 38-43.

Wang, T., & Khan, J. R. Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme – Part I: Development of Theory and Algorithm. Journal of Thermal Science and Engineering Applications, 2010, vol. 2, iss. 3, article no. 31001. DOI: 10.1115/1.4002754.

Wang, T., & Khan, J. R. Overspray and Interstage Fog Cooling in Compressor Using Stage-Stacking Scheme: Part 2 – Case Study. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 7: Education; Industrial and Cogeneration; Marine; Oil and Gas Applications. Berlin, Germany. June 9–13, 2008, pp. 111-121. DOI: 10.1115/GT2008-50323.

Kudinov, A., & Gorlanov, S. Povyshenie effektivnosti gazoturbinnoi ustanovki putem vpryska vodyanogo para v kameru sgoraniya dvigatelya NK-37. [Efficiency Increase Of Gas-Turbine Installation By Injection Of Water Vapor In The Nk-37 Engine Combustion Chamber]. Vestnik SGASU. Gradostroitel'stvo i arkhitektura – Herald of the Samara State Technical University. Town building and architecture, 2014, vol. 1, iss. 14, pp. 103 110.

Tudosie, A. N. Mathematical model for a jet engine with cooling fluid injection into its combustor. Proceeding of International Conference of Scientific Papers AFASES, Brasov, 22 24 May, 2014, PP. 265 272. Available at: https://www.afahc.ro/ro/afases/2014/mecanica/Tudosie_combustor.pdf (accessed 30.11.2023).

Tudosie, A. N. Mathematical model for a jet engine with cooling fluid injection into its compressor. Proceeding of International Conference of scientific paper AFASES, Brasov, 22-24 May, 2014, 8 p. Available at: https://www.afahc.ro/ro/afases/2014/mecanica/Tudosie_compresor.pdf (accessed 30.11.2023).

Lisitsa, A. Yu., Nemchenko, D. A., Petukhov, I. I., & Sorogin, F. G. K voprosu effektivnosti kosvenno-isparitel'nogo okhlazhdeniya tsiklovogo vozdukha GTP [On Efficiency of Indirect Evaporative Cooling For GTU Cyclic Air]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2014, no. 9/116, pp. 50-55.

Berkovich, A. L., Polischuk, V. G., & Nazarenko, A. V. Forsirovanie statsionarnykh gazoturbinnykh ustanovokoptimal'nym vpryskom vody v kompressor [Boosting Gas Turbine Power Plants Through Optimal Water Injection Into Compressor]. Nauchno-tekhnicheskie vedomosti SPbGPU – Scientific and technical bulletin of Peter the Great St. Peterburg Politechnic University, 2015, no. 2/219, pp. 33-40. DOI 10.5862/JEST.219.4.

Kler, A. M., Zakharov, Yu. B., & Potanina, Yu. M. Otsenka effektivnosti vpryska vody mezhdu chastyami vozdushnogo kompressora dlya GTU i PGU. [Efficiency estimation of water injection between air compressor parts for gas turbine unit and combined-cycle plant]. Teplofizika i aeromekhanika – Thermal physics and aeromechanics, 2015, vol. 24, no. 3. pp. 497 505.

Sorogin, F. G., Zhemanyuk, P. D., Trofimov, V. P., Shakhov, Y. V., & Petukhov, I. I. K voprosu kompleksnoi otsenki effektivnosti GTP s okhlazhdeniem tsiklovogo vozdukha [The Gas-Turbine Drive with Cyclic Air Cooling Efficiency Integrated Evaluation Problem]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, no. 4/131, pp. 25 33.

Sorogin, F. G. Metod rascheta energeticheskikh pokazatelei GTP [The Gas-Turbine Drives Energy Factors Calculation Method]. Vestnik dvigatelestroeniya – Engine-designing bulletin, 2017, no. 2, pp. 29–33.

Bianchi, M., Pascale, A. De., Melino, F., Peretto, A., & Sasha, S. Water Injection Evaporation in Frame 7EA Gas Turbine Wrapper. Proceedings of ASME Turbo Expo 2017: Power for Land, Sea and Air. Charlotte, North Caroline, USA. June 26-30, 2017. article no. GT2017 64189. 12 p. DOI: 10.1115/GT2017-64189.

Hartel, C., & Pfeiffer, P. Model analysis of high-fogging effects on the work of compression. Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Volume 2: Turbo Expo 2003. Atlanta, Georgia, USA. June 16–19, 2003, pp. 689-698. DOI: 10.1115/GT2003-38117.

Novelo, D. A. B., & Igie, U. Aero Engine Compressor Cooling by Water Injection – Part 1: Evaporative Compressor Model. Energy, 2018, vol. 160, pp. 1224-1235. DOI: 10.1016/j.energy.2018.05.170.

Novelo, D. A. B., & Igie, U. Aero Engine Compressor Cooling by Water Injection – Part 2: Performance and Emission Reductions. Energy, 2018, vol. 160, pp. 1236-1243. DOI: 10.1016/j.energy.2018.05.171.

Kadhim, H. J., Abbas, A. K., Kadhim, T. J., & Rashid, F. L. Evaluation of Gas Turbine Performance in Power Plant with High-Pressure Fogging System. Mathematical Modelling of Engineering Problems, 2023, vol. 10, no. 2, pp. 605-612. DOI: 10.18280/mmep.100230.

Kok, J. B. W., & Haselhoff, E. A. Thermodynamic analysis of the thermal and exergetic performance of a mixed gas-steam aero derivative gas turbine engine for power generation. Heliyon, 2023, no. 9, article no. e18927, pp. 1 12. DOI: 10.1016/j.heliyon.2023.e18927.

Bassily, A. M. Performance enhancements and NOx emission reductions using novel exhaust-driven hybrid gas turbine inlet air-cooling techniques. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, DOI: 10.1177/09544089231210782.

Lopata, J., & Carter, P. DARPA’s RASCAL: Status, Challenges, and Accomplishments. 18th Annual AIAA/USU Conference on Small Satellites. Article no. SSC04 X 2. 6 p. Available at: https://www.enginehistory.org/GasTurbines/GE/DARPA_s%20RASCAL_%20Status%20Challenges%20and%20Accomplishments.pdf (accessed 30.11.2023).

Ulitenko, Yu. A., Yelansky, A. V., & Kravchenko, I. F. Problemy vybora skhemy silovoi ustanovki dlya pervoi stupeni transportno-kosmicheskoi sistemy [Problems of Selection of Configuration for Powerplant Intended For Space Transportation System Stage 1]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2013, no. 8/105, pp. 25-30.

Ulitenko, Yu. A., Elanskij, A. V., & Kravchenko, I. F. Modernizacija turboreaktivnogo dvuhkonturnogo dvigatelja s forsazhnoj kameroj sgoranija putem vpryska vody v protochnuju chast' vozduhozabornika [Modernization of the turbofan en-gine with afterburner combustion by water injection into air intake duct]. Vestnik dvigatelestroenija – Engine-designing bulletin, 2014, no. 2, pp. 122–129.

Mehta, U., Huynh, L., & Hagseth, P. Water injection pre-compressor cooling assist space access. The Aeronautical Journal, 2015, vol. 119, no. 1212, pp. 145 171.

Ulitenko, Yu. A., Yelansky, A. V., & Kravchenko, I. F. Rasshirenie diapazona ekspluatatsii pryamotochnykh vozdushno-reaktivnykh dvigatelei putem vpryska vody na vkhode v dvigatel' [The Expansion Of The Range Of Operation Of Ramjet Engines By Water Injection At The Inlet To The Engine]. Sistemi ozbroєnnya і vіis'kova tekhnіka – Armament Systems and defense technology, 2016, no. 2/46, pp. 158-163.

Ulitenko, Yu. A., Yelansky, A. V., Kravchenko, I. F. Vliyanie vpryska vody na vkhode v pryamotochnyi vozdushno-reaktivnyi dvigatel'' na ego kharakteristiki. [The Effect Of Water Injection At The Inlet Of Ramjet Engine On Its Characteristics]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology,, 2016, no. 8/135, pp. 22 28.

Ulitenko, Yu. A. Analiz kharakteristik turboreaktivnogo dvukhkonturnogo dvigatelya s forsazhnoi kameroi sgoraniya s vpryskom vody za vkhodnym ustroistvom [Turbojet bypass engine with after-burner with water injection after input unit performance analysis]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 1, pp. 29-38. DOI: 10.32620/aktt.2019.1.03.

Ulitenko, Yu., Minenok, M, Kravchenko, I. Analiz kharakterystyk turboreaktyvnoho dvokonturnoho dvyhuna z forsazhnoyu kameroyu z·horyannya z vporskuvannyam vody na vkhodi do kompresora vysokoho tysku. [Performance Analysis of Turbofan Engine With Afterburner with Water Injection at High-Pressure Compressor Inlet]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 4(sup. 1)/181, pp. 49 57. DOI: 10.32620/aktt.2022.4sup1.08.

Ulitenko, Yu. O., Minenok, M. A., & Kravchenko, I. F. Analiz vplyvu mistsya vporskuvannya vody na kharakterystyky turboreaktyvnoho dvokonturnoho dvyhuna z forsazhnoyu kameroyu z’horyannya [Analysis of the Influence of the Place of Water Injection on the Performance of Turbofan Engine with Afterburner]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 4/190, pp. 35 42. DOI: 10.32620/aktt.2023.4sup2.04.

Meichao, X., Linsen, S. & Dakun, X. Effect of water spray on tip leakage flow in a inlet stage of high-speed compressor. Aerospace Science and Technology, 2023, vol. 142, part B, article no. 108687. DOI: 10.1016/j.ast.2023.108687.

Chaker, M., & Meher-Homji, C. B. Gas Turbine Power Augmentation: Parametric Study Relating to Fog Droplet Size and Its Influence on Evaporative Efficiency. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 7: Education; Industrial and Cogeneration; Marine; Oil and Gas Applications. Berlin, Germany. June 9–13, 2008, pp. 357-369. DOI: 10.1115/GT2008-51476.

Hendricks, R. C., Shouse, D., & Roquemore, M. Water Injected Turbomachinery. The 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Technical memorandum NASA/TM–2005-212632, 2005. 20 p. Available at: https://ntrs.nasa.gov/api/citations/20050175876/downloads/20050175876.pdf (accessed 30.11.2023).

NATOPS Flight Manual. NAVY Model AV 8B/TAV 8B. Naval Air System Command, 2008. 714 p.

Eames, D. J. H. Short Haul Civil Tiltrotor Contingency Power System Preliminary Design: NASA report CR–2006 214059. Available at: https://ntrs.nasa.gov/api/citations/20060006384/downloads/20060006384.pdf (accessed 30.11.2023).

Trotskii1, N. I., & Khakimov, Kh. Kh. Analiz vozmozhnykh putei kratkovremennogo forsirovaniya GTD na primere vspomogatel'nogo gazoturbinnogo energoagregata [Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit]. Nauka i Obrazovanie. MGTU im. N.E. Baumana. Elektronniy zhurnal – Science and Education of the Bauman MSTU. Electronic Journal, 2016, vol. 5, pp. 93-103. DOI: 10.7463/0516.0840406.

Stettler, M. E. J., Eastham, S., & Barrett, S. R. H., Air quality and public health impacts of UK airports. Part I: Emissions. Atmospheric Environment, 2011, vol. 45, iss. 31, pp. 5415–5424. DOI: 10.1016/j.atmosenv.2011.07.012.

Lefebvre, A. H., & Ballal, D. R. Gas Turbine Combustion Alternative Fuels and Emissions. NY, CRC Press Publ., 2010. 560 p.

Environmental Protection, Annex 16, Volume II Aircraft Engine Emissions. International Civil Aviation Organization, Chicago, 2008. Available at: https://www.icao.int/environmental-protection/Docume-nts/EnvironmentalReports/2022/ENVReport2022_Art17.pdf (accessed 24.03.2024).

Airport air quality manual. ICAO, 2011. Available at: https://www.icao.int/environmental-protection/Documents/Doc%209889.SGAR. WG2.Initial%20Update.pdf (accessed 14.01.2024).

Engine Exhaust Emissions Data Bank. International Civil Aviation Organization, 2013. Available at: https://www.easa.europa.eu/en/downloads/131424/en (accessed 24.03.2024).

Development of the technical basis for a New Emissions Parameter covering the whole Aircraft operation (NEPAIR). 2003. Available at: https://cordis.europa.eu/project/id/G4RD-CT-2000-00182. (accessed 14.01.2024).




DOI: https://doi.org/10.32620/aktt.2024.3.01