Utilizing thermoacoustic technologies in marine hybrid power plants with fuel cells
Abstract
Keywords
Full Text:
PDF (Українська)References
European Commission. 2020 Annual Report on CO2 Emissions from Maritime Transport. European Commission: Brussel, Belgium, 2021. Available at: https://european-accreditation.org/wp-content/uploads/2022/06/2020-Annual-report-from-the-Commission.pdf. (accessed 10.03.2023).
Reduction Ship Emissions IMO EEXI & CII /SEEMP. Available at: https://marine-offshore.bureauveritas.com/newsroom/ng-ship-emissions. (accessed 10/03/2023).
Mallouppas, G. & Yfantis, E. A. Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals. Journal of Marine Science and Engineering, 2021, vol. 9, iss. 4, article no. 415. DOI: 10.3390/jmse9040415.
Bordogna, G. Aerodynamics of wind-assisted ships: Interaction effects on the aerodynamic performance of multiple wind-propulsion systems. Available at: https://doi.org/10.4233/uuid:96eda9cd-3163-4c6b-9b9f-e9fa329df071. (accessed 10/03/2023).
Baroutaji, A., Arjunan, A., Ramadan, M., Robinson, J., Alaswad, A., Abdelkareem, M. A. & Olabi, A.-G. Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids, 2021, vol. 9, article no. 100064. DOI: 10.1016/j.ijft.2021.100064.
Biert, L., Godjevac, M., Visser, K. & Aravind, P. V. A review of fuel cell systems for maritime applications. Journal of Power Sources, 2016, vol. 327, pp. 345-364. DOI: 10.1016/j.jpowsour.2016.07.007.
Xing, H., Stuart, C., Spence, S. & Chen, H. Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives. Sustainability, 2021, vol. 13, iss. 3, article no. 1213. DOI: 10.3390/su13031213.
Zhang, J., Xie, Z., Zhang, J., Tang, Y., Song, C., Navessin, T. & Holdcroft, S. High temperature PEM fuel cells. Journal of Power Sources, 2006, vol. 160, iss. 2, pp. 872-891. DOI: 10.1016/j.jpowsour.2006.05.034.
Nöst, M., Doppler, C., Klell, M., & Trattner, A. Thermal Management of PEM Fuel Cells in Electric Vehicles. Springer Briefs in Applied Sciences and Technology, 2017, pp. 93–112. DOI: 10.1007/978-3-319-57445-5_7.
Korobko, V. V. & Shevcov, A. P. Eksperymental'ni doslidzhennja termoakustychnyh dvyguniv z dvofaznym robochym tilom [Features thermoacoustic thermal machines using low-temperature thermal energy source]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 4sup1 (181), pp.87-93. DOI: 10.32620/aktt.2022.4sup1.12
Korobko, V. V., Moskovko, O. O., Mostipanenko, H. B. & Serbin, S. I., Doslidzhennya roboty` impul`snoyi dvonapravlenoyi turbiny` v rezonatori termoakustychnogo dvyguna [Investigation of the operation of the pulse bi-directional turbine in the resonator of the thermoacoustic engine]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 8(143), pp. 19–25.
Korobko, V. V. Pidvyshchennia efektyvnosti enerhetychnykh ustanovok shliakhom zastosuvannia termoakustychnykh tekhnolohii [Improvement of Efficiency of Power Plants by Applying Thermoacoustic Technologies]. Cudostroenye y morskaia ynfrastruktura – Shipbuilding & marine infrastructure, Nykolaev, NUK, 2018, no. 2 (10), pp. 252–261.
DOI: https://doi.org/10.32620/aktt.2023.4.11