Progress in electric propulsion numerical simulation
Abstract
Keywords
Full Text:
PDFReferences
Electric Propulsion Innovation & Competitiveness. Access mode: https://epic-src.eu/wp-content/uploads/Number-of-EP-thrusters-flown-or-ordered_2-1.pdf. (accessed 19 April 2023).
Lev, D., Myers, R. M., Lemmer, K. M., Kolbeck, J., Koizumi, H. & Polzin, K. The technological and commercial expansion of electric propulsion. Acta Astronautica, 2019, vol. 159, pp. 213-227. DOI: 10.1016/j.actaastro.2019.03.058.
Stuhlinger, E. Electric space propulsion systems. Space Science Reviews, 1967, vol. 7, no. 5-6, pp. 795-847. DOI: 10.1007/BF00542896.
Boyd, I. D. Numerical modeling of spacecraft electric propulsion thrusters. Progress in Aerospace Sciences, 2005, vol. 41, no. 8, pp. 669-687. doi: 10.1016/j.paerosci.2006.01.001
Mazouffre, S. Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Sources Science and Technology, 2016, vol. 25, no. 3. Article no. 033002. 3 p. DOI: 10.1088/0963-0252/25/3/033002.
Levchenko, I., Xu, S., Mazouffre, S., Lev, D., Pedrini, D., Goebel, D. & Bazaka, K. Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Physics of Plasmas, 2020, vol. 27, no. 2. Article no. 020601. 30 p. DOI: 10.1063/1.5109141.
Brophy, J. R. Perspectives on the success of electric propulsion. Journal of Electric Propulsion, 2022, vol. 1, no. 1, article no. 9. DOI: 10.1007/s44205-022-00011-0.
Lovtsov, A. S., Kravchenko, D. A., Tomilin, D. A. & Shagaida, A. A. Current Status of Development and Application of Main Types of Electric Propulsion. Plasma Physics Reports, 2022, vol. 48, no. 9, pp. 933-960. DOI: 10.1134/S1063780X22600499.
Cichocki, F., Taccogna, F., & Garrigues, L. Numerical simulations of plasma thrusters and/or related technologies. Frontiers in Physics, 2022, vol. 10. DOI: 10.3389/fphy.2022.1074459.
Jahn, R. G. Physics of Electric Propulsion. McGraw-Hill. New York City, 1968. 339 p.
Holste, K., Dietz, P., Scharmann, S., Keil, K., Henning, T., Zschätzsch, D. & Klar, P. J. Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer. Review of Scientific Instruments, 2020, vol. 91, no. 6. Article no. 061101. 55 p. DOI: 10.1063/5.0010134.
Dawson, J. M. Particle simulation of plasmas. Reviews of modern physics, 1983, vol. 55, no. 2. pp. 403-447. DOI: 10.1103/RevModPhys.55.403.
Stanier, A., Chacón, L. & Chen, G. A fully implicit, conservative, non-linear, electromagnetic hybrid particle-ion/fluid-electron algorithm. Journal of Computational Physics, 2019, vol. 376, pp. 597-616. DOI: 10.1016/j.jcp.2018.09.038.
Wang, J., Hu, Y. On the limitations of hybrid particle-in-cell for ion thruster plume simulations. Physics of Plasmas, 2019, vol. 26, no. 10. Article no. 103502. 8 p. DOI: 10.1063/1.5111791.
Tskhakaya, D., Matyash, K., Schneider, R. & Taccogna, F. The Particle‐In‐Cell Method. Contributions to Plasma Physics, 2007, vol. 47, no. 8-9, pp. 563-594. DOI: 10.1002/ctpp.200710072.
Takizuka, T. & Abe, H. A binary collision model for plasma simulation with a particle code. Journal of computational physics, 1977, vol. 25, no. 3, pp. 205-219. DOI: 10.1016/0021-9991(77)90099-7.
Bird, G. A. Molecular gas dynamics and the direct simulation of gas flows. Oxford, Clarendon Press, 1994. 458 p.
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics, 1998, vol. 12, no. 6, pp. 620-631. DOI: 10.1063/1.168744.
Kühn, C. & Groll, R. picFoam: An OpenFOAM based electrostatic Particle-in-Cell solver. Computer Physics Communications, 2021, vol. 262. Article no. 107853. 14 p. DOI: 10.1016/j.cpc.2021.107853.
Capon, C. J., Brown, M., White, C., Scanlon, T. & Boyce, R. R. pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions. Computers & Fluids, 2017, vol. 149, pp. 160-171. DOI: 10.1016/j.compfluid.2017.03.020.
Kang, S. H. PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM. Aerospace, 2023, vol. 10, no. 1, article no. 44. DOI: 10.3390/aerospace10010044.
Raisanen, A. L., Hara, K. & Boyd, I. D. Two-dimensional hybrid-direct kinetic simulation of a Hall thruster discharge plasma. Physics of Plasmas, 2019, vol. 26, no. 12, article no. 123515. 14 p. DOI: 10.1063/1.5122290.
Verboncoeur, J. P., Langdon, A. B., Gladd, N. T. An object-oriented electromagnetic PIC code. Computer Physics Communications, 1995, vol. 87, no. 1-2, pp. 199-211. DOI: 10.1016/0010-4655(94)00173-Y.
Becker, R. & Herrmannsfeldt, W. B. i g u n− A program for the simulation of positive ion extraction including magnetic fields. Review of scientific instruments, 1992, vol. 63, no. 4, pp. 2756-2758. DOI: 10.1063/1.1142795.
Kalvas, T., Tarvainen, O., Ropponen, T., Steczkiewicz, O., Ärje, J. & Clark, H. IBSIMU: A three-dimensional simulation software for charged particle optics. Review of Scientific Instruments, 2010, vol. 81, no. 2, article no. 02B703. 3 p. DOI: 10.1063/1.3258608.
Spädtke, P. & Wipf, S. KOBRA 3-a code for the calculation of space-charge-influenced trajectories in 3-dimensions (No. GSI--89-09). Gesellschaft fuer Schwerionenforschung mbH, 1989. 76 p.
White, C., Borg, M. K., Scanlon, T. J., Longshaw, S. M., John, B., Emerson, D. R. & Reese, J. M. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver. Computer Physics Communications, 2018, vol. 224, pp. 22-43. DOI: 10.1016/j.cpc.2017.09.030.
DOI: https://doi.org/10.32620/aktt.2023.4.07