Modeling of aerodynamic noise of quadrotor type aerotaxi

Petro Lukianov, Oleg Dusheba

Abstract


The subject of this work is a study of the current state of modeling the flow around the blades of quadcopters, models of aerodynamic sound generation, formulation, and numerical solution of the problem of generation of rotation noise by the blades of a quadrotor type aerotaxi. The models describing the flow field around the quadrotor blades include the model of nonlinear vortices in lattices, the Reynolds-averaged Navier-Stokes equation (RANS, URANS), the large eddy simulation method (LES), and the direct numerical simulation (DNS) of the system of aerodynamic equations. This paper analyzes the main noise models of different types of aerodynamic origin.  Gutin’s model  is used to describe the noise of the quadrotor rotation, and the Ffowcs -Williams-Hawkings equation  in the formulation of Farassat is used to model the noise taking into account various sound sources. However, these approaches have certain drawbacks that limit their application. The following paper uses a modern approach to modeling noise of aerodynamic origin based on the three-dimensional unsteady equation of sound propagation from a thin blade in the potential approximation, previously proposed by one of the authors of the work. Using this approach, a numerical calculation of the problem of sound generation (rotational noise) of the aerodynamic origin of a quadrotor type aerotaxi was performed. The purpose of the study. Despite the approaches described above, there is a problem associated with achieving an acceptable noise level, i.e. its further reduction. To solve this problem, there is a need to use more accurate models that will allow research on reducing air taxi noise. Tasks of the study. In this regard, the task of modeling noise of aerodynamic origin was set and solved using a refined model of the sound generated by the interaction of the flow and air taxi blades. Research methods are based on the construction and use of a mathematical model for the generation of rotation sound generated by the joint operation of aerotaxi rotors. On this basis, the calculations of the near and far sound fields were performed. A new model for calculating the long-range sound field of a quadrotor type aerotaxi is proposed, which considers the mutual formation of the resulting sound field from the joint operation of 4 propellers. The pressure coefficient and the sound pressure level in the distant sound field were calculated, and the frequency filling of the spectrum of the generated sound wave was investigated. Results and Conclusions. Numerical calculations of the problem of aerotaxi rotation noise generation showed that the maximum pressure level in the generated waves is in the immediate vicinity of the location of the quadrotor screws. However, the maximum value of the pressure level depends on the parameters of the problem, which vary: the thickness of the blade and the speed of the horizontal flight of the aerotaxi. As one moves away from the screws, the local maxima disappear and the wave takes the form of a flat wave. The general level of generated sound (rotational noise) is in the range of 70dB-102dB, which coincides with the results of studies of quadrotor aerotaxi, as well as taxis with the arrangement of propellers according to the aircraft type. The generated rotational noise energy is concentrated in the first 4-5 harmonics. Therefore, the noise model of aerodynamic origin proposed in this study can be used to study the rotation noise of a quadrotor type aerotaxi.

Keywords


generation of aerotaxi rotation sound; calculation of sound field characteristics

Full Text:

PDF

References


Gutin, L. Ya. On the sound field of a rotating propeller. National Advisory Committee For Aeronautics. Technical Memorandum No. 1195, NACA.Washington, October, 1948. 22 p. Avaiable at: https://ntrs.nasa.gov/api/citations/20030068996/downloads/20030068996.pdf. (accessed Jan. 12, 2023).

Ffowcs Williams, J. E. & Hawkings, D. L. Theory Relating to the Noise of Rotating Machinery. Journal of Sound and Vibration, 1969, vol. 10, no. 1, pp. 10-21. DOI: 10.1016/0022-460X(69)90125-4.

Farassat, F. Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007-214853. – NASA Langley Research Center, Hampton, Virginia, March, 2007. Avaiable at: https://ntrs.nasa.gov/api/citations/20070010579/downloads/20070010579.pdf. (accessed Jan. 12, 2023).

Lukianov, P. V. Nestacionarnoe rasprostranenie malyh vozmushhenij ot tonkogo kryla: blizhnee i dal'nee pole [Unsteady propagation of small disturbances from a thin wing: The near and far field]. Akustychnyj visnyk – Acoustic bulletin, 2009, vol. 12, no. 3, pp. 41-55. Avaiable at: http://dspace.nbuv.gov.ua/handle/123456789/87285. (accessed Jan. 12, 2023).

Lee, H. & Lee, D.-J. Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle. Phys. Fluids, 2020, vol. 32, iss. 4, article no. 047107, pp. 1-18. DOI: 10.1063/5.0003992.

Jia, Z., Lee, S., Sharma, K. & Brentner, K. S. Aeroacoustic analysis of a liftoffset coaxial rotor using high-fidelity CFD/CSD loose coupling simulation. J. Am. Helicopter Soc., 2020, vol. 65, iss. 1, pp. 1-15. DOI: 10.4050/JAHS.65.012011.

Jia, Z. & Lee, S. Computational Study on Noise of Urban Air Mobility Quadrotor Aircraft. J. Am. Helicopter Soc., 2022, vol. 67, iss. 1, pp. 1-15. DOI: 10.4050/JAHS.67.012009.

Kevin Li, S. & Lee, S. Prediction of Urban Air Mobility Multirotor VTOL Broadband Noise Using UCD-QuietFly. J. Am. Helicopter Soc., 2021, vol. 66, iss. 3, pp. 1-13. DOI: 10.4050/JAHS.66.032004.

Kevin Li, S. & Lee, S. Acoustic Analysis and Sound Quality Assessment of a Quiet Helicopter for Air Taxi Operations. J. Am. Helicopter Soc., 2021, vol. 67, iss. 3, pp. 1-15. DOI: 10.4050/JAHS.67.032001.

Lebed, V. G., Kalkamanov, S. A. & Pchelnikov, S. I. Metod rascheta aerodinamicheskikh kharakteristik rotornogo vinta [The method of calculation of aerodynamic characteristics rotary screw]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, vol. 5, pp. 29-34. Avaiable at: http://nbuv.gov.ua/UJRN/aktit_2016_5_6. (accessed Jan. 12, 2023).

Diachenko, O. Ju., Krivtsov, V. S. & Timchenko, O. M. Analiz metodov aerodinamicheskogo rascheta nesushchego vinta vertoleta [Analysis methods of aerodynamic calculations of helicopter’s rotor]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2014, vol. 4, pp. 22-33. Avaiable at: http://nbuv.gov.ua/UJRN/akit_2014_4_6. (accessed Jan. 12, 2023).

Lee, H. & Lee, D-J. Numerical prediction of aerodynamic noise radiated from a propeller of unmanned aerial vehicles. Inter. Noise., 2019. June 16-19., Noise control for a better environmental, pp. 1-9. Avaiable at: https://www.sea-acustia.es/INTERNOISE_2019/Fchrs/Proceedings/1469.pdf. (accessed Jan. 12, 2023).

Legendre, C., Ficat-Andrieu, V., Poulos, A., Kitano, Y., Nakashima, Y., Kobayashi, W. & Minorikawa, G. Computational noise level predictions of small multi-rotor unmanned aircraft systems at different payload condition. DICUAM 2021-15-17 March 2021. Avaiable at: https://www.fft.be/sites/default/files/private/dicuam_-_legendre_-_computational_noise_level_predictions.pdf. (accessed Jan. 12, 2023).

Thai, A. & Grace, S. Prediction of small quadrotor blade induced noise. 25th AIAA/CEAS Aeroacoustics Conference. May 2019. 13 p. DOI: 10.2514/6.2019-2684.

Zaslavskii, Yu. M. & Zaslavskii, V. Yu. Akusticheskii shum nizkoletyashchego kvadrotora [Acoustic noise of a low-flying quadrotor]. Noise Theory and Practice, 2019, vol. 5, iss. 5, pp. 21-27. Avaiable at: https://cyberleninka.ru/article/n/akusticheskiy-shum-nizkoletyaschego-kvadrokoptera/viewer. (accessed Jan. 12, 2023).

Sokol, G. I., Nekrasov, V. Ye. & Zhmurko, V. S. K raschetu akusticheskogo polya vintov kvadrotora [To the calculation of the acoustic field of propellers of a quadrotor]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko - matematicheskie nauki, 2019, vol. 27, iss. 4, pp. 42-51. Avaiable at: https://www.researchgate.net/publication/343921265_K_RASCETU_HARAKTERISTIK_AKUSTICESKOGO_POLA_VINTOV_KVADROKOPTERA_DO_ROZRAHUNKU_HARAKTERISTIK_AKUSTICNOGO_POLA_GVINTIV_KVADROKOPTERU. (accessed Jan. 12, 2023).

Goncharenko, B. I., Kuz'menkov, A. N. & Kotov, A. N. Eksperimental'noe issledovanie osobennosti formirovaniya spektra shumov bespilotnogo letatel'nogo apparata [Experimental study of the features of the formation of the noise spectrum of an unmanned aerial vehicle]. Noise theory and practice, 2021, vol. 6, iss. 4, pp. 49-59.

Sokolov, G. E. Analiz akusticheskikh informatsionnykh signalov kvadrokopterov i pomekhovykh zvukov goroda [Analysis of acoustic information signals of quadcopters and interference sounds of the city]. Problemy informatyzacii' ta upravlinnja,2021,vol.67(3),pp.61-70. Avaiable at: https://jrnl.nau.edu.ua/index.php/PIU/article/view/16208/23458. (accessed Jan. 12, 2023).

Torija, A. J. & Clark C. A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles. International Journal of Environmental Research and Public Health, 2021, vol. 18, iss. 2, article no. 682. DOI: 10.3390/ijerph18020682.

Schäffer, B., Pieren, R., Heutschi, K., Wunderli, J. M. & Becker, S. Drone Noise Emission Characteristics and Noise Effects on Humans – A Systematic Review. Int. J. Environ. Res. Public Health, 2021, vol. 18, iss. 11, article no. 5940. DOI: 10.3390/ijerph18115940.

Ivošević, J., Ganić, E., Petošić, A. & Radišić, T. Comparative UAV Noise-Impact Assessments through Survey and Noise Measurements. Int. J. Environ. Res. Public Health. 2021, vol. 18, iss. 12, article no. 6202. DOI: 10.3390/ijerph18126202.

Yamada, T., Itoyama, K., Nishida, K. & Nakadai, K. Assessment of Sound Source Tracking Using Multiple Drones Equipped with Multiple Microphone Arrays. Int. J. Environ. Res. Public Health., 2021, vol. 18, iss. 17, article no. 9039. DOI: 10.3390/ijerph18179039.

Hui, C. T. J. , Kingan, M. J., Hioka, Y., Schmid, E., Dodd, G., Dirks, K. N., Edlin, S., Mascarenhas, S. & Shim,Y.-M. Quantification of the Psychoacoustic Effect of Noise from Small Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health., 2021, vol. 18, iss. 17, article no. 8893. DOI: 10.3390/ijerph18178893.

Diaz, P. V. & Yoon, S. Computational Study of NASA’s Quadrotor Urban Air Taxi Concept. AIAA SciTech Forum., 6-10 January 2020, Orlando, FL. DOI: 10.2514/6.2020-0302.

Sagaga, J. & Lee, S. Acoustic Predictions for the Side-by-Side Air Taxi Rotor in Hover. Vertical Flight Society Forum 77, May 2021. DOI: 10.4050/F-0077-2021-16695.

Orndorff, N. C., Scotzniovsky, L. & Sarojini, D. Air-taxi transition trajectory optimization with physics-based models. AIAA SCITECH 2023 Forum. Jan 23-27, 2023, National Harbor, MD. DOI: 10.2514/6.2023-0324.

Lukianov, P. V. Primenenie chislenno-analiticheskogo metoda dlja reshenija zadach akustiki [Application of the numerical-analytical method for solving problems of acoustics]. Akustychnyj sympozium «Konsonans-2005», Kyiv, 27-29 veresnja 2005, pp. 225-230. Avaiable at: http://hydromech.org.ua/content/pdf/cons/cons2005_225-230.pdf. (accessed Jan. 12, 2023).

Lukianov, P. V. Ob odnom chislenno-analiticheskom podhode k resheniju zadachi generacii zvuka tonkim krylom. Chast' II. Shema prilozhenija k nestacionarnym zadacham [On one numerical-analytical approach to solving of a problem on sound generation by a thin wing. Part II. A schematic of application to non-stationaty problems]. Akustychnyj visnyk – Acoustic bulletin, 2012, vol. 15, iss. 3, pp. 45-52. Avaiable at: http://hydromech.org.ua/content/ru/av/15-3_45-52.html. (accessed Jan. 12, 2023).

Lukianov, P. V. Generatsіya zvuku pri dozvukovomu obtіkannі gvinta gelіkoptera [Sound Generation by Helicopter Blade Swept by Subsonic Flux]. Naukovі vіstі Natsіonal'nogo tekhnіchnogo unіversitetu Ukraїni “Kiїvs'kii polіtekhnіchnii іnstitut”- Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2011, no. 4, pp. 143-148. Avaiable at: https://ela.kpi.ua/handle/123456789/36757. (accessed Jan. 12, 2023).

Lukianov, P. V. Vpliv formi, krivizni poperechnogo pererіzu lopatі rotra gelіkoptera na parametri shumu obertanyaya [Blade Shape and Cross Section’s Curvature Influence Parameters of the Rotor’s Rotational Noise]. Naukovі vіstі Natsіonal'nogo tekhnіchnogo unіversitetu Ukraїni “Kiїvs'kii polіtekhnіchnii іnstitut” - Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2012, no. 4, pp. 149-153. Avaiable at: https://ela.kpi.ua/handle/123456789/36878. (accessed Jan. 12, 2023).

Lukianov, P. V. Generatsіya zvuka lopattyu gelіkotera pri kosomu obduvannі potokom [Sound generation by helicopter’s blade at oblique angle of flow blow]. Vіsnik Kiїvs'kogo natsіonal'nogo unіversitetu іmenі Tarasa Shevchenka. Serіya: fіziko-matematichnі nauki - Bulletin of Taras Shevchenko National University of Kyiv Series: Physics & Mathematics, 2011, no. 4. pp. 91-94. Avaiable at: https://bphm.knu.ua/index.php/bphm/issue/view/30. (accessed Jan. 12, 2023).

Lukianov, P. V. Variatsiya formy prodol'nogo secheniya lopasti vertoleta pri modelirovanii shuma vrashcheniya [Shape variation of the helicopter’s blade longitudinal section for rotational noise simulation]. Visnyk Cherkas'kogo universytetu. Serija: Prykladna matematyka. Informatyka, 2012, no. 18(231), pp. 15-22.

Lependin. L. F. Akustika [Acoustics]. Moscow, ”Vysshaja shkola” Publ.,1978. 448 p.




DOI: https://doi.org/10.32620/aktt.2023.4.05