Modeling of aerodynamic noise of quadrotor type aerotaxi
Abstract
Keywords
Full Text:
PDFReferences
Gutin, L. Ya. On the sound field of a rotating propeller. National Advisory Committee For Aeronautics. Technical Memorandum No. 1195, NACA.Washington, October, 1948. 22 p. Avaiable at: https://ntrs.nasa.gov/api/citations/20030068996/downloads/20030068996.pdf. (accessed Jan. 12, 2023).
Ffowcs Williams, J. E. & Hawkings, D. L. Theory Relating to the Noise of Rotating Machinery. Journal of Sound and Vibration, 1969, vol. 10, no. 1, pp. 10-21. DOI: 10.1016/0022-460X(69)90125-4.
Farassat, F. Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007-214853. – NASA Langley Research Center, Hampton, Virginia, March, 2007. Avaiable at: https://ntrs.nasa.gov/api/citations/20070010579/downloads/20070010579.pdf. (accessed Jan. 12, 2023).
Lukianov, P. V. Nestacionarnoe rasprostranenie malyh vozmushhenij ot tonkogo kryla: blizhnee i dal'nee pole [Unsteady propagation of small disturbances from a thin wing: The near and far field]. Akustychnyj visnyk – Acoustic bulletin, 2009, vol. 12, no. 3, pp. 41-55. Avaiable at: http://dspace.nbuv.gov.ua/handle/123456789/87285. (accessed Jan. 12, 2023).
Lee, H. & Lee, D.-J. Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle. Phys. Fluids, 2020, vol. 32, iss. 4, article no. 047107, pp. 1-18. DOI: 10.1063/5.0003992.
Jia, Z., Lee, S., Sharma, K. & Brentner, K. S. Aeroacoustic analysis of a liftoffset coaxial rotor using high-fidelity CFD/CSD loose coupling simulation. J. Am. Helicopter Soc., 2020, vol. 65, iss. 1, pp. 1-15. DOI: 10.4050/JAHS.65.012011.
Jia, Z. & Lee, S. Computational Study on Noise of Urban Air Mobility Quadrotor Aircraft. J. Am. Helicopter Soc., 2022, vol. 67, iss. 1, pp. 1-15. DOI: 10.4050/JAHS.67.012009.
Kevin Li, S. & Lee, S. Prediction of Urban Air Mobility Multirotor VTOL Broadband Noise Using UCD-QuietFly. J. Am. Helicopter Soc., 2021, vol. 66, iss. 3, pp. 1-13. DOI: 10.4050/JAHS.66.032004.
Kevin Li, S. & Lee, S. Acoustic Analysis and Sound Quality Assessment of a Quiet Helicopter for Air Taxi Operations. J. Am. Helicopter Soc., 2021, vol. 67, iss. 3, pp. 1-15. DOI: 10.4050/JAHS.67.032001.
Lebed, V. G., Kalkamanov, S. A. & Pchelnikov, S. I. Metod rascheta aerodinamicheskikh kharakteristik rotornogo vinta [The method of calculation of aerodynamic characteristics rotary screw]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2016, vol. 5, pp. 29-34. Avaiable at: http://nbuv.gov.ua/UJRN/aktit_2016_5_6. (accessed Jan. 12, 2023).
Diachenko, O. Ju., Krivtsov, V. S. & Timchenko, O. M. Analiz metodov aerodinamicheskogo rascheta nesushchego vinta vertoleta [Analysis methods of aerodynamic calculations of helicopter’s rotor]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2014, vol. 4, pp. 22-33. Avaiable at: http://nbuv.gov.ua/UJRN/akit_2014_4_6. (accessed Jan. 12, 2023).
Lee, H. & Lee, D-J. Numerical prediction of aerodynamic noise radiated from a propeller of unmanned aerial vehicles. Inter. Noise., 2019. June 16-19., Noise control for a better environmental, pp. 1-9. Avaiable at: https://www.sea-acustia.es/INTERNOISE_2019/Fchrs/Proceedings/1469.pdf. (accessed Jan. 12, 2023).
Legendre, C., Ficat-Andrieu, V., Poulos, A., Kitano, Y., Nakashima, Y., Kobayashi, W. & Minorikawa, G. Computational noise level predictions of small multi-rotor unmanned aircraft systems at different payload condition. DICUAM 2021-15-17 March 2021. Avaiable at: https://www.fft.be/sites/default/files/private/dicuam_-_legendre_-_computational_noise_level_predictions.pdf. (accessed Jan. 12, 2023).
Thai, A. & Grace, S. Prediction of small quadrotor blade induced noise. 25th AIAA/CEAS Aeroacoustics Conference. May 2019. 13 p. DOI: 10.2514/6.2019-2684.
Zaslavskii, Yu. M. & Zaslavskii, V. Yu. Akusticheskii shum nizkoletyashchego kvadrotora [Acoustic noise of a low-flying quadrotor]. Noise Theory and Practice, 2019, vol. 5, iss. 5, pp. 21-27. Avaiable at: https://cyberleninka.ru/article/n/akusticheskiy-shum-nizkoletyaschego-kvadrokoptera/viewer. (accessed Jan. 12, 2023).
Sokol, G. I., Nekrasov, V. Ye. & Zhmurko, V. S. K raschetu akusticheskogo polya vintov kvadrotora [To the calculation of the acoustic field of propellers of a quadrotor]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko - matematicheskie nauki, 2019, vol. 27, iss. 4, pp. 42-51. Avaiable at: https://www.researchgate.net/publication/343921265_K_RASCETU_HARAKTERISTIK_AKUSTICESKOGO_POLA_VINTOV_KVADROKOPTERA_DO_ROZRAHUNKU_HARAKTERISTIK_AKUSTICNOGO_POLA_GVINTIV_KVADROKOPTERU. (accessed Jan. 12, 2023).
Goncharenko, B. I., Kuz'menkov, A. N. & Kotov, A. N. Eksperimental'noe issledovanie osobennosti formirovaniya spektra shumov bespilotnogo letatel'nogo apparata [Experimental study of the features of the formation of the noise spectrum of an unmanned aerial vehicle]. Noise theory and practice, 2021, vol. 6, iss. 4, pp. 49-59.
Sokolov, G. E. Analiz akusticheskikh informatsionnykh signalov kvadrokopterov i pomekhovykh zvukov goroda [Analysis of acoustic information signals of quadcopters and interference sounds of the city]. Problemy informatyzacii' ta upravlinnja,2021,vol.67(3),pp.61-70. Avaiable at: https://jrnl.nau.edu.ua/index.php/PIU/article/view/16208/23458. (accessed Jan. 12, 2023).
Torija, A. J. & Clark C. A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles. International Journal of Environmental Research and Public Health, 2021, vol. 18, iss. 2, article no. 682. DOI: 10.3390/ijerph18020682.
Schäffer, B., Pieren, R., Heutschi, K., Wunderli, J. M. & Becker, S. Drone Noise Emission Characteristics and Noise Effects on Humans – A Systematic Review. Int. J. Environ. Res. Public Health, 2021, vol. 18, iss. 11, article no. 5940. DOI: 10.3390/ijerph18115940.
Ivošević, J., Ganić, E., Petošić, A. & Radišić, T. Comparative UAV Noise-Impact Assessments through Survey and Noise Measurements. Int. J. Environ. Res. Public Health. 2021, vol. 18, iss. 12, article no. 6202. DOI: 10.3390/ijerph18126202.
Yamada, T., Itoyama, K., Nishida, K. & Nakadai, K. Assessment of Sound Source Tracking Using Multiple Drones Equipped with Multiple Microphone Arrays. Int. J. Environ. Res. Public Health., 2021, vol. 18, iss. 17, article no. 9039. DOI: 10.3390/ijerph18179039.
Hui, C. T. J. , Kingan, M. J., Hioka, Y., Schmid, E., Dodd, G., Dirks, K. N., Edlin, S., Mascarenhas, S. & Shim,Y.-M. Quantification of the Psychoacoustic Effect of Noise from Small Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health., 2021, vol. 18, iss. 17, article no. 8893. DOI: 10.3390/ijerph18178893.
Diaz, P. V. & Yoon, S. Computational Study of NASA’s Quadrotor Urban Air Taxi Concept. AIAA SciTech Forum., 6-10 January 2020, Orlando, FL. DOI: 10.2514/6.2020-0302.
Sagaga, J. & Lee, S. Acoustic Predictions for the Side-by-Side Air Taxi Rotor in Hover. Vertical Flight Society Forum 77, May 2021. DOI: 10.4050/F-0077-2021-16695.
Orndorff, N. C., Scotzniovsky, L. & Sarojini, D. Air-taxi transition trajectory optimization with physics-based models. AIAA SCITECH 2023 Forum. Jan 23-27, 2023, National Harbor, MD. DOI: 10.2514/6.2023-0324.
Lukianov, P. V. Primenenie chislenno-analiticheskogo metoda dlja reshenija zadach akustiki [Application of the numerical-analytical method for solving problems of acoustics]. Akustychnyj sympozium «Konsonans-2005», Kyiv, 27-29 veresnja 2005, pp. 225-230. Avaiable at: http://hydromech.org.ua/content/pdf/cons/cons2005_225-230.pdf. (accessed Jan. 12, 2023).
Lukianov, P. V. Ob odnom chislenno-analiticheskom podhode k resheniju zadachi generacii zvuka tonkim krylom. Chast' II. Shema prilozhenija k nestacionarnym zadacham [On one numerical-analytical approach to solving of a problem on sound generation by a thin wing. Part II. A schematic of application to non-stationaty problems]. Akustychnyj visnyk – Acoustic bulletin, 2012, vol. 15, iss. 3, pp. 45-52. Avaiable at: http://hydromech.org.ua/content/ru/av/15-3_45-52.html. (accessed Jan. 12, 2023).
Lukianov, P. V. Generatsіya zvuku pri dozvukovomu obtіkannі gvinta gelіkoptera [Sound Generation by Helicopter Blade Swept by Subsonic Flux]. Naukovі vіstі Natsіonal'nogo tekhnіchnogo unіversitetu Ukraїni “Kiїvs'kii polіtekhnіchnii іnstitut”- Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2011, no. 4, pp. 143-148. Avaiable at: https://ela.kpi.ua/handle/123456789/36757. (accessed Jan. 12, 2023).
Lukianov, P. V. Vpliv formi, krivizni poperechnogo pererіzu lopatі rotra gelіkoptera na parametri shumu obertanyaya [Blade Shape and Cross Section’s Curvature Influence Parameters of the Rotor’s Rotational Noise]. Naukovі vіstі Natsіonal'nogo tekhnіchnogo unіversitetu Ukraїni “Kiїvs'kii polіtekhnіchnii іnstitut” - Research Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2012, no. 4, pp. 149-153. Avaiable at: https://ela.kpi.ua/handle/123456789/36878. (accessed Jan. 12, 2023).
Lukianov, P. V. Generatsіya zvuka lopattyu gelіkotera pri kosomu obduvannі potokom [Sound generation by helicopter’s blade at oblique angle of flow blow]. Vіsnik Kiїvs'kogo natsіonal'nogo unіversitetu іmenі Tarasa Shevchenka. Serіya: fіziko-matematichnі nauki - Bulletin of Taras Shevchenko National University of Kyiv Series: Physics & Mathematics, 2011, no. 4. pp. 91-94. Avaiable at: https://bphm.knu.ua/index.php/bphm/issue/view/30. (accessed Jan. 12, 2023).
Lukianov, P. V. Variatsiya formy prodol'nogo secheniya lopasti vertoleta pri modelirovanii shuma vrashcheniya [Shape variation of the helicopter’s blade longitudinal section for rotational noise simulation]. Visnyk Cherkas'kogo universytetu. Serija: Prykladna matematyka. Informatyka, 2012, no. 18(231), pp. 15-22.
Lependin. L. F. Akustika [Acoustics]. Moscow, ”Vysshaja shkola” Publ.,1978. 448 p.
DOI: https://doi.org/10.32620/aktt.2023.4.05