Development of software for data segmentation by photo and video information
Abstract
Keywords
Full Text:
PDF (Українська)References
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Benenson, R., Franke, U., Roth, S. & Shiele, B. The cityscapes dataset for semantic urban scene understanding. arXiv, 2016, article no. 1604.01685, pp. 1-29. DOI: 10.48550/arXiv.1604.01685.
Brostow, G. J., Shotton, J., Fauqueur, J. & Cipolla, R. Segmentation and recognition using structure from motion point clouds. Computer Vision – ECCV 2008. ECCV 2008. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008, vol. 5302, pp. 44-57. DOI: 10.1007/978-3-540-88682-2_5.
Byungju, K., Junho, Y. & Junmo, K. Highway driving dataset for semantic video segmentation. arXiv, 2011, article no. 2011.00674, pp. 1-12. DOI: 10.48550/arXiv.2011.00674.
Pohudina, O., Kritskiy, D., Bykov, A. N. & Szalay, T. Method for Identifying and Counting Objects. Integrated Computer Technologies in Mechanical Engineering. Advances in Intelligent Systems and Computing, Springer, Cham, 2020, vol. 1113, pp. 161-172. DOI: 10.1007/978-3-030-37618-5_15.
Topchiyev, B. S. Alhorytmichno-prohramnyy metod koloryzatsiyi zobrazhen'. Mahistersʹka dys. [Algorithmic-program method of image colorization. Master's thesis]. Kiyv, 2020. 148 p. Available at: https://ela.kpi.ua/handle/123456789/33832 (accessed March 29, 2023).
Chyzh, I. H. & Lisnyak, I. H. Trykomponentni linzovi zum-afokal'ni systemy transfokatoriv [Three-component lens zoom-afocal zoom systems]. Naukovi visti KPI – Scientific news of KPI, 2019, no. 3, pp. 73-79.
Pipko, A. S. Intelektual'na systema fotorealistychnoho perenesennya styliv mizh zobrazhennyamy. Mahistersʹka dys. [Intelligent system of photorealistic transfer of styles between images. Master's thesis]. Kiyv, 2018. 72 p. Available at: https://ela.kpi.ua/handle/123456789/23756 (accessed March 29, 2023).
Patel, M. J., Kothari, A. M. & Koringa, H. P. A novel approach for semantic segmentation of automatic road network extractions from remote sensing images by modified UNet. Radioelektronni i komp'uterni sistemi – Radioelectronic and computer systems, 2022, no. 3, pp. 161-173. DOI: 10.32620/reks.2022.3.12.
Vasil'eva, I. K. & Popov, А. V. Metod avtomaticheskoi klasterizatsii dannykh distantsionnogo zondirovaniya [Remote sensing data automatic clustering method]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2019, no. 3 (155), pp. 64-75. DOI: 10.32620/aktt.2019.3.08.
Lin, Ts., Marie, M., Belongie, S., Bourdev, L. & Girshick, R. Microsoft COCO: Common Objects in Context. arXiv, 2015, article No. 1405.0312, pp. 1-15. DOI: 10.48550/arXiv.1405.0312.
DOI: https://doi.org/10.32620/aktt.2023.3.07