Influence of wing shape on characteristics of fan-wing aircraft power plant
Abstract
Keywords
Full Text:
PDF (Українська)References
Komarov, B. G. and Zinchenko, D. M. Vplyv formy rotornoho rushiya na kharakterystyky intehrovanoyi z krylom sylovoyi ustanovky litaka [The influence of the shape of the rotor thruster on the characteristics of the aircraft power plant integrated with the wing]. Mechanics of gyroscopic systems, 2020, no. 40, pp. 123-132. DOI: 10.20535/0203-3771402020248785.
Houghton, E. L., Carpenter, P. W., Collicott, S. H. and Valentine, D. T. Flow Control and Wing Design. Aerodynamics for Engineering Students (Sixth Edition), 2013, pp. 601–642. DOI: 10.1016/B978-0-08-096632-8.00009-6.
Duddempudi, D., Yao, Y., Edmondson, D., Yao, J. and Curley, A. Computational study of flow over generic fan-wing airfoil. Aircraft Engineering & Aerospace Technology, 2007, vol. 37, no. 3, pp. 238-244. DOI: 10.1108/00022660710743831.
Albani, A. and Peebles, P. Span Rotor: Prove Tecniche Relazione. Universitá degli Studi di Roma, Rome, La Sapienza, 1997.
Forshaw, S. Wind-Tunnel Investigation of FanWing. London, Final Year Project, M. Eng. Imperial College, 1999.
Kogler, K. Fanwing, experimental evaluation of a novel lift and propulsion device. London Imperial College, 2002.
Gad-el-Hak, Mohamed. 9 - Low-Reynolds-Number Aerodynamics. 10 - Drag Reduction. 11 - Mixing Enhancement. Flow Control: passive, active, and reactive flow management, Cambridge University Press, 2009, pp. 189-249. DOI: 10.1017/CBO9780511529535.
Benferhat, S., Yahiaoui, T., Imine, B., Ladjedel, O. and Šikula, O. Experimental and numerical study of turbulent flow around a Fanwings profile. Engineering Applications of Computational Fluid Mechanics, 2019, vol. 13, iss. 1, pp. 698-712. DOI: 10.1080/19942060.2019.1639076.
Tsagarakis, M. S. Project Solaris – Analysis of airfoil for solar powered flying wing UAV. Mälardalen University Sweden, 2011, pp. 5-27. Report code: MDH.IDT.FLYG.21.10.2011.GN300.15HP.Ae
Błoński, D., Strzelecka, K. and Kudela, H. Vortex Trapping Cavity on Airfoil: High-Order Penalized Vortex Method Numerical Simulation and Water Tunnel Experimental Investigation. Energies, 2021, vol. 14, iss. 24, article no. 8402. DOI: 10.3390/en14248402.
De Gregorio, F. and Fraioli, G. Flow control on a high thickness airfoil by a trapped vortex cavity. 14th Int Symposium on Applications of Laser Techniques to Fluid Mechanics, 7-10 July, 2008, Paper No. 1363, Lisbon, Portugal, 2008. Available at: https://www.researchgate.net/profile/Fabrizio-De-Gregorio-2/publication/267575042_Flow_control_on_a_high_thickness_airfoil_by_trapped_vortex_cavity/links/54536a060cf2bccc4909fef6/Flow-control-on-a-high-thickness-airfoil-by-trapped-vortex-cavity.pdf. (accessed 06.02.2023).
Lumsdaine, E., Johnson, S., Fletcher, L. and Peach, E. Investigation of the Kline-Fogleman airfoil section for rotor blade applications. Contractor Report (CR), No. 19750006642. The university of Knoxville, Tennessee, Work of the US Gov. Public Use Permitted, 1974. Available at: https://ntrs.nasa.gov/api/citations/19750006642/downloads/19750006642.pdf. (accessed 06.02.2023).
Kim, T.-A., Kim, D.-W., Park, S.-K. and Kim, J. Performance of a cross-flow fan with various shapes of a rearguider and an exit duct. Journal of Mechanical Science and Technology, 2008, no. 22, pp. 1876-1882. DOI: 10.1007/s12206-008-0726-9.
Selva, S., Pon, J. Shri. and Sridevi, C. Design and analysis of fanwing concept in conventional wing aircraft. Journal of Basic and Applied Engineering Research, 2014, vol. 1, no. 3, pp. 68-72. Available at: https://www.krishisanskriti.org/vol_image/02Jul201504073617.pdf. (accessed 06.02.2023).
Siliang, Du., Qijun, Zhao. and Bo, Wang. Research on Distributed Jet Blowing Wing Based on the Principle of Fan-Wing Vortex-Induced Lift and Thrust. International Journal of Aerospace Engineering, 2019, vol. 2019, article no. 7561856. DOI: 10.1155/2019/7561856.
Lin, M., Yongquang, Ye. and Nan, Li. Research progress and application prospects of fan-wing aircraft. Acta Aeronauticaet Astrunautica Sinica, 2015, vol. 36, no. 8, pp. 2651-2661. DOI: 10.7527/S1000-6893.2015.0058.
Askari, A. and Shojaeefard, M. H. Experimental and numerical study of an airfoil in combination with a cross flow far. Journal of Aerospace Engineering, 2012, vol. 227, iss. 7, pp. 1173-1187. DOI: 10.1177/0954410012452213.
Zargar, O. A., Lin, Tee., Zebua, A. G., Lai, T.-J., Shih, Y.-C., Hu, S.-C. and Leggett, C. The effects of surface modifications on aerodynamic characteristics of airfoil DU 06 W 200 at low Reynolds numbers. International Journal of Thermofluids, 2022, vol. 16, pp. 1-12, article no. 100208. DOI: 10.1016/j.ijft.2022.100208.
Krashnitsa, Yu. A. and Hoshmandi, A. Nekotoryye rezul'taty eksperimental'nykh issledovaniy aerodinamicheskikh kharakteristik elementov nesushchikh sistem letatel'nykh apparatov [Some results of experimental investigations of aerodynamic characteristics of elements of aircraft carrying systems]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 6, pp. 90-97. ISSN: 1727-7337, ISSN: 2663-2217.
Krashnitsa, Yu. and Zhyriakov, D. Numerical study of aerodynamic characteristics of airfoil with high-lift devices. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2023, no. 1, pp. 55-66. DOI: 10.32620/aktt.2023.1.06.
Kokotina, V. V., Lesnaya, L. A. and Harchenko, V. G. Vliyaniye chelovecheskogo faktora pri sozdanii aviatsionnykh dvigateley [Influence of human factor in creation of aircraft engines]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 4 sup. 1, pp. 5-10. DOI: 10.32620/aktt.2021.4sup1.01.
DOI: https://doi.org/10.32620/aktt.2023.2.02