Numerical study of the aerodynamic characteristics of airfoil with high-lift devices
Abstract
Keywords
Full Text:
PDFReferences
Ji, Q., Zhang, Y., Chen, H., Ye, J. Aerodynamic optimization of a high-lift system with adaptive dropped hinge flap. Chinese Journal of Aeronautics, 2022, vol. 35, Iss. 11, pp. 191-208. DOI: 10.1016/j.cja.2022.03.012.
Zhu, Z., Xiao, T., Zhi, H., Deng, S., Lu, Y. Aerodynamic characteristics of co-flow jet wing with simple high-lift devices. Chinese Journal of Aeronautics, 2022, vol. 35, iss. 10, pp. 67-83. DOI: 10.1016/j.cja.2022.03.008.
Rudolph, P. K. C. High-Lift Systems on Commercial Subsonic Airliners. NASA Contractor Report 4746, Document ID: 19960052267, 1996. 155 p.
Tannehill, J. C., Anderson, D. A., Pletcher, R. H. Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor &Francis Publ., 1997. 736 p.
Krashanitsa, Yu. A., Hoshmandi, A. Nekotoryye rezul'taty eksperimental'nykh issledovaniy aerodinamicheskikh kharakteristik elementov nesushchikh sistem letatel'nykh apparatov [Some Results of Experimental Research of Aerodynamic Characteristics Of Components of a Carrier System of an Aircraft]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2017, no. 6, pp. 90–97.
Krashanytsya, Yu. A. Experimental studies of the influence of the interface on the aerodynamic characteristics of a flat airfoil with a deflected slat and flap. Kharkov, KHAI Publ., 1974. 76 p.
Krashanitsa, Yu. A., Zhiryakov, D. Yu. Aerodinamicheskiy profil' v transzvukovom potoke gaza [Airfoil seсtion in the near-sonic flow of gas]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 2, pp. 20-27. DOI: 10.32620/aktt.2021.2.03.
ANSYS Fluent Tutorial Guide. Release 18.0. January 2017. Available at: http://users.abo.fi/rzevenho/
ansys%20fluent%2018%20tutorial%20guide.pdf. (accessed 22 July 2022).
BOEING 737 MIDSPAN AIRFOIL (b737c-il). Available at: http://airfoiltools.com/airfoil/details?airfoil=b737c-il (accessed 22 July 2022).
Reynolds Number Calculator. Available at: http://airfoiltools.com/calculator/reynoldsnumber?MReNumForm%5Bvel%5D=17&MReNumForm%5Bchord%5D=1&MReNumForm%5Bkvisc%5D=1.4207E-5&yt0=Calculate%20 (accessed 22 July 2022).
ANSYS FLUENT 12.0 Theory Guide - 4.4.3 Realizable k-є Model. Available at: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node60.htm (accessed 22 July 2022).
ANSYS FLUENT 12.0 Theory Guide - 4.7 Transition SST Model. Available at: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node72.htm (accessed 22 July 2022).
Krashanitsa, Yu.A. Vektorno-tenzornyy analiz, teoriya potentsiala i metod granichnykh integral'nykh uravneniy v nachal'no-krayevykh zadachakh aerogidrodinamiki [Vector-tensor analysis, potential theory and method of boundary integral equations in initial-boundary problems of aerohydrodynamics]. Kyiv, Naukova dumka Publ., 2016. 274 p. ISBN 978-966-00-1547-0.
Chunareva, N., Efimova, M., Solonin, V. Wing And Enhance Takeoff And Landing Performance Aircraft. Available at: https://www.flight-study.com/2021/04/aircraft-takeoff-and-landing-performance.html. (accessed 22 July 2022).
Mkhitaryan, A. Aerodinamika [Aerodynamics]. 2-ye izd., Moscow, Mashinostroyeniye Publ., 1976. 448 p.
Blake, W. Jet Transport Performence Methods. The Performance Training Group Flight Operations Engineering Boeing Commercial Airplane, 2009. 742 p.
Grebenikov, A., Zhyriakov, D. Metod opredeleniya kharakteristik obshchego napryazhenno-deformirovannogo sostoyaniya v silovykh elementakh konsoli kryla v zavisimosti ot nagruzok funktsionirovaniya [Method of determination of the characteristics of the general stress-strain state in the main parts of the wing due to functioning loads]. Vidkryti informatsiyni ta komp'yuterni intehrovani tekhnolohiyi – Open Information and Computer Integrated Technologies, 2021, no. 92. pp. 26-40, DOI: 10.32620/oikit.2021.92.03.
DOI: https://doi.org/10.32620/aktt.2023.1.06