Model of formation of porosity of sponge titanium briquettes at the sintering stage
Abstract
Keywords
Full Text:
PDF (Українська)References
Kiselev, A. Korpuskulyarnaya struktura adsorbentov geley. In. Book Metody issledovaniya struktury vysokodispersnykh i poristykh tel. Moscow, Izd-vo AN SSSR Publ., 1958, pp. 47–59.
Klymenko, L., Andrieiev, V., Sluchak, O., Pryshchepov, O., Shchesiuk, O. Cluster model of the porosity of spongy titanium briquettes at the stage of pressing. Eastern-European Journal of Enterprise Technologies, 2020, vol. 3, iss. 6 (105), pp. 42-52. DOI: 10.15587/1729-4061.2020.206715.
Ferguson, S., Hales, T. A formulation of the Kepler conjecture, 2002. Available at: https://arxiv.org/pdf/math/9811072.pdf. (accessed 12.12.2022).
Froes, Francis H. (Sam)., Qian, Ma. 31 - A perspective on the future of titanium powder metallurgy. Titanium Powder Metallurgy, 2015, pp. 601–608. DOI: 10.1016/B978-0-12-800054-0.00031-9.
Gab I., Stetsiuk T., Kostiuk B., Martyniuk S., Naidich Yu. Adheziyno-mekhanichne zʺyednannya oksydnykh materialiv z metalamy [Adhesive-mechanical connection of oxide materials with metals]. Adheziya rozplaviv i payka materialiv – Adhesion of melts and soldering materials, 2015, no. 48, pp. 117–124. Available at: http://www.materials.kiev.ua/
article/1878. (accessed 12.12.2022).
Liu, Na., Wang, Ying., He, Wei-jun., Li, Jun., Chapuis, Adrien et al. Microstructure and textural evolution during cold rolling and annealing of commercially pure titanium sheet. Transactions of Nonferrous Metals Society of China, 2018, vol. 28, iss. 6, pp. 1123-1131. DOI: 10.1016/S1003-6326(18)64748-X.
Annur, D., Rokhmanto, F., Thaha, Y. N., Kartika, I., Dimyati, A., Supriadi, S., Suharno, B. Processing and Characterization of Porous Titanium for Orthopedic Implant Prepared by Argon-atmospheric Sintering and Arc Plasma Sintering. Materials Research, 2021, vol. 24, iss. 6. DOI: 10.1590/1980-5373-MR-2021-0122.
Zabolotnyi, O., Povstyanoi, O., Somov, D., Sychuk, V., Svirzhevskyi, K. Technology of Obtaining Long-Length Powder Permeable Materials with Uniform Density Distributions. World Congress on Engineering and Technology; Innovation and its Sustainability 2018. WCETIS 2018. EAI/Springer Innovations in Communication and Computing. Springer, Cham, 2020, pp. 63-78. DOI: 10.1007/978-3-030-20904-9_5.
Marchenko, Tu., Petrik, Ya., Ovchynnikov, A., Skrebtsov, A. Puti povisheniya svoistv zahotovok detaley HTD iz zharoprochnykh titanovykh splavov, po-luchennykh metodom priamoho lazernoho vyra-shchivania [Ways to increase the properties of blots of gas turbine engine parts from heat-resistant titanium alloys obtained by direct laser growth]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2021, no. 5 (175), pp. 53-59. DOI: 10.32620/aktt.2021.5.07.
Wenjie Hu, Sergii Markovych, Kun Tan, Oleksandr Shorinov, Tingting Cao. Issledovaniye iznosostoykogo pokrytiya aviatsionnykh detaley iz titanovogo splava po tekhnologii kholodnogo napyleniya [Research on wear resistance coating of aircraft titanium alloy parts by cold spraying technology]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2020, no. 6 (166), pp. 61-71. DOI: 10.32620/aktt.2020.6.07.
Kobashi, Makoto., Kanetake, Naoyuki. Novel Processing of Porous Titanium Composite for Producing Open Cell Structure. Materials Science Forum, 2007, vol. 539-543, pp. 1004-1009. DOI: 10.4028/www.scientific.net/MSF.539-543.1004.
Khunger, G. Y. Izbrannye metody issledovanyia v metallove-denii [Selected research methods in metallurgy]. Moscow, Metallurgiya Publ., 1985. 416 p.
McCracken, C., Motchenbacher, C., Barbis, D. Review of titanium powder-production methods. International Journal of Powder Metallurgy, 2010, vol. 46, iss. 5, pp. 19-26.
Frenkel’, Ya. Osvobozhdeniye vnutriatomnoy energii [Release of intra-atomic energy]. Moscow, Akad. nauk SSSR Publ., 1946. 124 p.
DOI: https://doi.org/10.32620/aktt.2023.1.03