Theoretical research of the temperature fields of copper during the formation of nanostructured layers in plasma environment

Yurii Shyrokyi, Andrey Sysoiev, Yuliia Panchenko

Abstract


The subject of study is the mathematical model for thermal processes during the formation of nanostructures in a plasma medium. In previous studies, it was shown that for the appearance of nanostructures, it is necessary that there be a certain temperature, its rate of increase, and thermal stresses. The required depth of the near-surface layer of the processed material, which is most favorable for the formation of nanostructures, is determined where the highest temperature stress gradients occur. The current work determines the technological parameters for obtaining nanostructures during ion-plasma treatment of the copper surface, as an example. The task of this work, by changing the energy of the ions, is to choose the location of the fields along the depth of the material to generate the necessary high temperature gradients in the given planes of the material. Thus, significant thermal stresses, and hence nanostructures, can be created in a large volume of material. The method used is analytical. In our work, a mathematical model was developed to describe the generation of temperature fields during ion-plasma surface treatment and tested on the process of copper treatment with oxygen ions. In this model, the joint actions of plasma flows and flows of charged particles with materials are realized through thermophysical, thermomechanical, thermal fatigue, diffusion, thermochemical, plasma-chemical processes and collisions. Therefore, the developed model will contribute to a more accurate determination of technological parameters for the formation of conditions conducive to the stable growth of nanostructures in the surface layers of processed materials. Because of numerous calculations, the dependence of the temperature of the surface layer of copper on the energy of oxygen ions was determined. The temperature fields in the zone of action of ions for three levels of the plane of the surface layer are calculated depending on the depth of penetration of ions for different times of interaction and at different current densities from 2.7∙106 to 2.1∙108 A/m2. Studies have shown that the maximum surface temperature is reached at the end of the thermal action of the ion. Conclusions. The obtained values of thermal stresses showed the possibility of formation of nanostructures in the surface layer of copper under the action of oxygen ions at a depth of x=0.5λm at a current density of 2.7∙106 A/m2. For the x=0.5λm plane at a current density of 3∙107 A/m2, where the largest temperature gradients were found, the maximum temperature stresses were calculated, amounting to 5∙108 N/m, which confirms the creation of conditions for obtaining nanostructures. But at 2.1∙108 A/m2, the total temperature rises, and the temperature gradients decrease, which decreases temperature stresses and failure to meet the conditions for obtaining nanostructures. The results obtained can be used to develop a technology for the production of nanostructures in a plasma environment, for example, on copper by ion-plasma treatment in an oxygen environment.in a plasma environment, for example, on copper by ion-plasma treatment in an oxygen environment.

Keywords


ionizing radiation; nanostructures; heat flux; temperature fields; temperature rise rate

References


Bazaka, K., Levchenko, I., Lim, J. W. M., Baranov, O., Corbella, C., Xu S. and Keidar M. MoS2-based nanostructures: synthesis and applications in medicine. Journal of Physics D: Applied Physics, 2019, vol. 52, no. 18, article id: 183001. DOI: 10.1088/1361-6463/ab03b3.

Levchenko, I., Xu, S., Teel, G. et al Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat Commun, 2018, vol. 9, article id: 879. DOI: 10.1038/s41467-017-02269-7.

Timerkaev, B. A., Shakirov, B. R., Timerkaeva D. B. Creation of Silicon Nanostructures in Electric Arc Discharge. High Energy Chem, 2019, no. 5, pp. 162-166. DOI: 10.1134/S0018143919020152.

Glukhov, O. V., Kolpakov, A. Ya., Kovaleva, M. G., Beresnev, V. M., Manokhin, S. S., Poplavsky, A. I., Khmara, A. N., Mishunin, M. V., Galkina, M. E., Gerus, J. V., Yapryntsev, M. N., Sirota, V. V., Glukhov O. V. Nanostructured Coatings Based on Amorphous Carbon and Gold Nanoparticles Obtained by the Pulsed Vacuum-arc Method. Journal of nano- and electronic physics, 2019, vol. 11, no. 4, article id: 04019.

Ghalmi, Z., Farzaneh, M. Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy. Applied Surface Science, 2014, vol. 314, pp. 564-569. DOI: 10.1016/j.apsusc.2014.05.194.

Bishop, M., Bakhru, H., Novak, S. W., Briggs, B. D., Matyi, R. J., Cady, N. C. Ion implantation synthesized copper oxide-based resistive memory devices. Appl. Phys, 2011, vol. 99, no. 20, pp. 202-212.

Khatavkar, S. N., Sartale, S. D. Superior Supercapacitive Performance of Grass-like CuO Thin Films Deposited by Liquid Phase Deposition. New Journal of Chemistry, 2020, vol. 17, no. 44, pp. 6778-6790.

Jafari, A., Tahani, K., Dastan, D., Asgary, S., Shi, Z., Yin, X.-T., Zhou, W.-D., Garmestani, H., Ţalu Jafari, Ş. A. Ion implantation of copper oxide thin films; statistical and experimental results. Surfaces and Interfaces, 2020, no. 18, pp. 118-127.

Xi, Y., Hu, C., Gao, P., Yang, R., He, X., Wang, X., Wan, B. Morphology and phase selective synthesis of CuxO (x=1, 2) nanostructures and their catalytic degradation activity Materials Science and Engineering, 2010, vol. 166, no. 1, pp. 113-117. DOI: 10.1016/j.mseb.2009.10.008.

Sabeeh, S. H., Hussein, H. A., Judran, H. K. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid International Journal of Nanoscience, 2017, vol. 16, no. 03, pp. 156-167.

Piri, F., Shafiee Afarani, M., Arabi, A. M. Synthesis of copper oxide quantum dots: effect of surface modifiers Materials Research Express, 2019, vol. 6, no. 12, article id: 125006. DOI: 10.1088/2053-1591/ab548d.

Mehdi, R.-N., Seied Mahdi1, P., Ali Akbar, D.-D., Seiedeh Somayyeh, H., Mir Mahdi, Z. Synthesis and characterization of copper oxalate and copper oxide nanoparticles by statistically optimized controlled precipitation and calcination of precursor. CrystEngComm 15-20, The Royal Society of Chemistry Express, 2013, no. 15, pp. 4077-4086.

Salapare, H. S., Balbarona, J. A., Clerc, L., Bassoleil, P., Zenerino, A., Amigoni, S., Guittard, F. Cupric Oxide Nanostructures from Plasma Surface Modification of Copper. Biomimetics (Basel), 2019, vol. 4, no. 42, pp. 432-441.

Khan, M. A., Muhammad, M. H., Khan, M. S., Iqbal, T., Pervaiz, A., Shafigue, M., Naeem, M. Microplasma-assisted synthesis of CuO nanostructures for catalytic degradation of organic dyes under solar irradiation. J Solid State Electrochem, 2020, no. 24, pp. 1123-1132. DOI: 10.1007/s10008-020-04602-5.

Sreeju, N., Rufus, A., Philip, D. Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures. Journal of Molecular Liquids, 2017, no. 242, pp. 690-700.

Lin, W., Wei, Y., Du, H., Hou, Li., Wang, G., Bi, H., Xu, B. Structural characteristics of nanocrystalline copper after carbon ion implantation. Micron, 2017, vol. 42, no. 7, pp. 691-694.

Sysoyev, Yu. O., Shyrokyj, Yu. V., Torosy¬an E. V. Pidvyshhennya efektyvnosti zapalyuvannya vakuumno-dugovogo rozryadu v dzherelax plazmy [Increasing the ignition efficiency of vacuum-arc discharge in plasma sources]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no 2. pp. 47-54. DOI: 10.32620/aktt.2022.2.06.

Gudmundsson, J. T., Brenning, N., Lundin, D., Helmersson, U. High power impulse magnetron sputtering discharge. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, vol. 30, no. 3, pp. 1–34.

Baranov, O., Romanov, M. Current Distribution on the Substrate in a Vacuum Arc Deposition Setup. Plasma Processes and Polymers, 2008, vol. 5, no. 3, pp. 256–263.

Kostyuk, G., Melkoziorova, O., Kostyuk, E., Shirokiy, Iur. Prospects for producing nanostructures in the volume of parts under the action of plasma flows. Rizannia ta instrumenty v tekhnolohichnykh syste-makh, KhNTU «KhPI», 2020, no. 92, pp. 107–121.

Popov, V. et al. Study of Ions Energy, Their Varieties and Charge on Temperature, Rate of Temperature Rise, Thermal Stresses for Nanostructures on Construction Materials. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham, 2019, pp. 107-121.

Kostyuk, G., Popov, V., Kostyk, K. Volume of the Nanocluster and Its Depth at Effect of Ions of Different Energies, Varieties and Charges on Titanium Alloy VT-1. Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering. Springer, Cham., 2019, pp. 415-423.

Shyrokyi, Yu. V. Modeliuvannia elektroeroziinykh protsesiv na hrafitovykh elektrodakh pry formuvanni nanostruktur u plazmovomu seredovyshchi [Modeling of electroerosion processes on graphite electrodes in the formation of nanostructures in a plasma medium]. Vidkryti informatsiini ta kompiuterni intehrovani tekhnolohii – Open Information and Computer Integrated Technologies, 2021, no. 94, pp. 58-76. DOI: 10.32620/oikit.2021.94.06.

Shyrokyi, Yu. V., Sysoiev, Yu. O., Postelnyk, T. V. Modeliuvannia umov otrymannia nanostruktur v aliuminiievykh splavakh pry dii ionizuiuchoho vyprominiuvannia [Modeling of conditions for obtaining nanostructures in aluminum alloys under the action of ionizing radiation]. Aviacijno-kosmicna tehnika i tehnologia – Aerospace technic and technology, 2022, no. 2, pp. 55-63. DOI: 10.32620/aktt.2022.2.07.

Kostiuk, H. Y., Shyrokyi, Yu. V. Perspektyvы prymenenyia lazernoi obrabotky dlia sozdanyia nanostruktur na RY yz «VolKar» [Prospects for the use of laser processing to create nanostructures on RI from "VolKar"]. Visnyk NTU «KhPI». Seriia: Tekhnolohii v mashynobuduvanni, 2017, no. 26(1248), pp. 60-65.

Kostiuk, H. Y., Pavlenko, V.N., Shyrokyi, Yu.V. Perspektyvы poluchenyia nanostruktur pry deistvyy ympulsnoho lazernoho yzluchenyia na staly [Prospects for obtaining nanostructures under the action of pulsed laser radiation on steel]. Visnyk NTU «KhPI». Seriia: Tekhnolohii v mashynobuduvanni, 2015, no. 40(1149), pp. 47-52.

Shyrokyi, Y., Kostyuk, G. Erosion Processes on Copper Electrodes Applied to Growth of Nanostructures in Plasma. DSMIE 2022. Lecture Notes in Mechanical Engineering. Springer Cham, 2022, pp. 494-503. DOI: 10.1007/978-3-031-06025-0_49.

Baranov, O. Romanov, M., Wolter, M., Kumar, S., Zhong, X., Ostrikov, K. Low-pressure planar magnetron discharge for surface deposition and nanofabrication. Physics of Plasmas, 2010, vol. 17, no. 5, pp. 117–128. DOI: 10.1063/1.3431098.

Shyrokyi, Y., Kostyuk, G. Investigation of the Influence of Crystallization Energy on the Size of Nanostructures During Copper Ion-Plasma. Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, Springer Cham, 2022. vol. 367, pp. 57-66. https://doi.org/10.1007/978-3-030-94259-5_6.

Shyrokyj, Y. V., Kostyuk, G. I. Modelyuvannya duhovoho rozryadu na midnomu katodi dlya heneratsiyi nanostruktur [Simulation of an arc discharge on copper cathode for the generation of nanostructures]. Vidkryti informatsiini ta kompiuterni intehrovani tekhnolohii – Open Information and Computer Integrated Technologies, 2021, no. 91, pp. 62-76. DOI: 10.32620/oikit.2021.91.05.




DOI: https://doi.org/10.32620/aktt.2022.5.04